
If I Could Save Thyme in a Baggie

Paul R. Potts

18 Aug 2020

Tuesday
The week is underway. My stress levels, and pain levels, have dropped a bit, and
that’s been a relief.

On Sunday evening we had a meal out on the back deck, with a fan blowing to
keep mosquitoes at bay. The boys and I were already slathered in eucalyptus oil
bug repellent, which we had applied earlier in the day, when I took them for a
walk around the perimeter of our woods. Grace ran out to get some barbecue,
and made us a salad of tomatoes and curly parsley from our gardens. We’ve
been bad about harvesting sprigs from the parsley plants regularly, especially
since the parsley plants have tended to get covered up by the sprawling, and
occasionally collapsing, borage and tomato plants, but the parsley plants don’t
seem to be much worse for wear, and they’ve been growing much faster than
they did early in the season. Over time they seem to become a bit tougher, but
they are still bright green and taste fine, especially after being marinated with
the tomatoes and dressing. The parsley plants did very well planted in the holes
in the concrete blocks that make up the border of the kitchen garden, growing to
a convenient size without fighting to invade the personal space of their neighbor
plants. This salad wasn’t tabouli, one of my very favorite salads, but it was still
delicious. Joy brought some summer squash, and so we had a dish of fried-up
squash, too, delicious, and she joined us on the deck at a separate table, in order
to maintain a bit of distance. It’s difficult to get the young children to keep their
distance, but it worked all right. We also popped open a bottle of mead flavored
with mint, made by our friends the Martins. This one was really good — a bit
sweeter than the previous one, but with a more delicate flavor.

Yesterday I dove into improving some Python code for a work project, and I was
reminded all over again why, although I like many things about it, Python is not
my favorite programming language, with tooling that still, in 2020, often feels
more like a hobby project rather than a piece of critical infrastructure. I spent
an embarrassingly long time trying to determine the cause of a bug that resulted
in my program generating data files that were incorrect, and inconsistent with
the previous version of my program. I’ll explain that below for nerds who might
be interested.

1

Python 2020: Lots of Movement, Little Improvement
I’m operating on the most-widely-used PC operating system, and trying to do
something that should be fairly simple: write a “file filter” program which will
allow me to drag files onto it. The program should run, open the file that was
dropped onto it, verify that it has the expected format and content, and then
generate an output file. This is something that has long been possible on other
platforms. On MacOS, even old-school versions of MacOS before it became the
BSD UNIX-based MacOS X, one easy way to do this was to create AppleScript
“droplets,” but there were other ways; I recall writing programs in Perl that
would support this.

It’s been surprisingly hard to make this work, and I still don’t have it working.
I wasted a lot of time reading blog posts and Stack Overflow questions and their
answers and messed with file associations, edited the registry, killed and restarted
the Windows Explorer program, etc. It still doesn’t work. I also tried following
various blog posts telling me how to turn a Python program into a Windows
executable. But it turns out those methods don’t work. I tried “py2exe,” but it
turned out that the project is hopelessly outdated. I tried “PyInstaller,” and that
didn’t work, and the obscure error messages I got gave me no help at all. I tried
“cx_freeze” and that also crashed; at least by searching on the errors, I was able
to find out that this is a known bug. I tried a suggested workaround, installing
a development version of “cx_freeze,” but that blew up with a blizzard of error
messages and I’m trying not to fall into the “sunk cost fallacy” of throwing more
good time after wasted time.

I could try to “downgrade” my Python version by a few years, but then I’d
have to rewrite some code, again, which I only recently rewrote because some
library functions were deprecated in the latest Python. This has been a constant
problem with Python over the years; a lot of the libraries, and even some of the
core language, hasn’t been stable, and this language is not new; version 1 came
out in 1994.

On to my bug.

The bug happened when calling this relatively simple Python function. This
function generates a Python byte array, which is a simple data structure that
just grows as needed to hold a series of data bytes. Python has opaque data
types that allow programs to be written with a high level of abstraction. That’s
great, but because I’m generating binary data files, sometimes I need to write
code that operates on low-level data types with exactly the sizes and behaviors
that I want. The NumPy (numeric Python) library provides some precise data
types such as uint32 that allow me to do what I need:

from numpy import uint32

def serialize_msbin_eeprom_record_header(record_data_size : uint32, record_data_checksum : uint32):

2

https://stackoverflow.com/a/42310168
https://stackoverflow.com/a/42310168

msbin_record_header = bytearray()

msbin_record_header.extend(uint32(0x80000000 | AT25M01_HIGH_QUARTER_BASE_ADDRESS))
msbin_record_header.extend(record_data_size)
msbin_record_header.extend(record_data_checksum)

return msbin_record_header

The bug was cropping up in the last line before the return statement, the one
that operates on record_data_checksum. The byte array was being extended
by eight bytes, not four. What?

I was calling this function from code that looked like this:

elements_v1_data_checksum_uint32 = uint32(sum(serialized_elements_bytesio.getvalue()))
elements_v1_extended_checksum_uint32 = elements_v1_data_checksum_uint32 + sum(serialized_v1_data_platform_data_meta)

msbin_bytes.extend(serialize_msbin_eeprom_record_header(elements_v1_extended_size_uint32, elements_v1_extended_checksum_uint32))

The first line starts with a BytesIO object, which is basically an in-memory
binary file object; calling getvalue() on that object returns a byte array, and
the sum() function, when passed a byte array, creates a byte-by-byte checksum.

The second line adds to this checksum to create an extended checksum. It sums
another byte array and adds the value to the previous uint32 object.

Then, I create a uint32 object from this sum. This uint32 object then gets
passed to the serialize_msbin_eeprom_record_header() function I de-
scribed above.

The function parameter has a type annotation: record_data_checksum
: uint32. This tells the Python interpreter (or compiler) that the second
parameter is, or at least ought to be, a uint32 object. Type annotations exist
in many other languages and have for decades. Python is a dynamically typed
language, similar to Apple’s Dylan language, but just recently has gained this
new type annotation feature. Dylan had optional type annotations in the early
1990s: if you didn’t specify types, the compiler would generate code without
doing compile-time type-checking, instead doing run-time type checking. This
allowed developers to use it more like a scripting language, writing code quickly
without worrying about the exact types they were using. Then, the code could
be tightened up later: the development environments had features that would
indicate “hot spots” where the generated code was less efficient due to this
run-time type checking, to help programmers add strict tying where it would be
useful.

What was really happening in my code? The uint32 object was being converted
to a uint64 object when I added another value to it, and then this uint64 object
was being sent to the serialize_msbin_eeprom_record_header() function
instead of the uint32 object it was expecting. And Python was fine with this,
because the type annotations don’t actually do anything when you run the code

3

under “CPython,” the standard and most widely-used Python interpreter. These
annotations are designed to be used with separate type-checking programs that
aren’t part of the standard Python distribution for Windows.

So why did this change to uint64 happen? Let’s try creating a simple piece of
code that replicates the problem:

from numpy import uint32

num_1 = uint32(1)
num_2 = uint32(2)
num_3 = 3
num_4 = num_1 + num_2
num_5 = num_1 + num_3
print ('num_4 value: ' + str(num_4) + ", type: " + str(type(num_4)))
print ('num_5 value: ' + str(num_5) + ", type: " + str(type(num_5)))

This prints the following output:

>num_4 value: 3, type: <class 'numpy.uint32'>
>num_5 value: 4, type: <class 'numpy.int64'>

These small values can’t be overflowing. Instead, what we are seeing is the
effect of rules designed to prevent overflow. Different languages do this in quite
different ways, and so it was not immediately obvious to me, as I typed the
original line of code, what would happen.

In languages like C, unsigned integer types by definition are allowed to overflow
or underflow. If you have a 32-bit unsigned integer that is holding the maximum
possible 32-bit value, 0xFFFFFFFF in hexadecimal or 4,294,967,295 in decimal,
and you add one to it, the value will “roll over” and become zero. The C standard
guarantees this behavior.

This rationale is complex, but the short version is that back when computers
were large and slow, doing otherwise would have required runtime checks, in
software or in hardware, to detect overflows or underflows. And so this behavior
was enshrined in the C standard, and developers like me are accustomed to it —
indeed, we rely on it all the time.

But what about the uint32 type in Python’s NumPy library?

Well, the NumPy documentation is pretty vague. It says:

The behavior of NumPy and Python integer types differs significantly
for integer overflows and may confuse users expecting NumPy integers
to behave similar [sic] to Python’s int.

I know that Python’s int handles overflow gracefully and safely, with some cost
in efficiency.

But it doesn’t give much detail describing how NumPy types actually work.

4

https://numpy.org/doc/stable/user/basics.types.html

There are a couple of possible ways that the library could handle possible overflow
conditions when adding two uint32 objects:

• The value could simply be allowed to overflow, as in C. Because NumPy
is designed for speed, to provide a faster alternative to Python’s general-
purpose data structures, this is the behavior I would have expected. The
comment in the NumPy documentation suggests that this might be the
case because NumPy integers “may confuse users” and don’t behave like
int.

• Adding two uint32 objects could always generate a result with the next-
larger type, uint64, no matter how large the actual numbers in those
objects are. That would be simple but incur some space overhead whether
it is needed or not.

• The generated code could actually look at the values in the objects, and if
necessary, either return the larger type, or generate an error.

I didn’t really know how the NumPy library handles this overflow, but I didn’t
think I needed to know, since I didn’t expect that my checksums of small data
structures would ever be large. I was writing a script, which is very problem-
specific, rather than a library, which should be able to handle all boundary
conditions safely. But let’s take a quick look at how it works:

from numpy import uint32

num_1 = uint32(0xFFFFFFFF)
num_2 = uint32(1)
num_3 = num_1 + num_2
print ('num_3 value: ' + str(num_3) + ", type: " + str(type(num_3)))

This prints the following output:

>./test.py:4: RuntimeWarning: overflow encountered in ulong_scalars
> num_3 = num_1 + num_2
>num_3 value: 0, type: <class 'numpy.uint32'>

Interesting: the overflow was detected, but the program generated a warning,
not an exception, and so terminated normally.

That’s what happens when adding two uint32 types. But that’s not what my
code was doing. My code was adding a Python int type to a NumPy uint32
type. And that’s where my expectations broke down.

from numpy import uint32

num_1 = uint32(0xFFFFFFFF)
num_2 = 1
num_3 = num_1 + num_2
print ('num_3 value: ' + hex(num_3) + ", type: " + str(type(num_3)))

5

prints:

>num_3 value: 0x100000000, type: <class 'numpy.int64'>

And it does the promotion even if the values won’t overflow:

from numpy import uint32

num_1 = uint32(1)
num_2 = 1
num_3 = num_1 + num_2
print ('num_3 value: ' + hex(num_3) + ", type: " + str(type(num_3)))

prints:

>num_3 value: 0x2, type: <class 'numpy.int64'>

In C, the behavior when using mixed types, unsigned and signed together, in
expressions, is trickier. Integer types are “promoted” before operations are done.

It looks like the NumPy library attempts to replicate C’s behavior in this case
and avoid potential overflow conditions, and so the int, even though it contains
only a small value, is promoted to the larger uint64 type — which I didn’t
even import because I didn’t plan to use it — before the addition is performed.
I’d have to look at the source code for NumPy to figure out exactly what is
happening, but the point is, I shouldn’t have to.

So it seems like we have the worst of several worlds now; we know from our
“RuntimeWarning” that the NumPy library can generate overflow warnings
when adding two uint32 objects, so there is code generated which does this
range-checking. But when a uint32 is added to a standard Python number, the
return value is the larger uint64. Because Python is dynamically typed, from
the interpreter’s perspective, nothing has actually gone wrong. And then, even
with type annotations, this type change isn’t caught by CPython because type
annotations aren’t actually used for type-checking. I just get unexpected output.

By the way, I tried the 3rd-party mypy utility, which is billed as a “linter” for
Python programs, and supposedly reads the type annotations, to see if it would
have caught the problem. It didn’t report an issue.

Python is now widely used in education, having displaced simpler and more
tightly-specified languages such as Scheme. I’m trying to imagine a first-year or
second-year computer science student trying to figure out this problem, when
expressions can wind up with unexpected types, and the language and tools are
not designed to help.

Python is also widely used in various industries; it’s used very extensively at
Google, and the language’s designer was a Google employee for a time. With this
kind of backing, one might think that Python might have had its foundations
shored up and improved; it might have even re-tooled to take advantage of some
advances in language implementation that came about in the 1980s and 1990s.

6

One of these big corporate backers might have invested money to make type
annotations actually work to make the code safer and more efficient.

I’ve been programming and studying computer science long enough to have
some understanding of language design, and I’ve lived to see the same mistakes
repeated again and again, as the tools underlying our critical infrastructure
emerge from informally-specified hobby projects, and language designers don’t
really ever seem to learn from their predecessors.

Can we hope for better, in the career and lifetime I’ve got left? I’m getting
tired of wasting so much time debugging, and of the slow churn of language
development that is really traveling without moving.

Wednesday
IKEA, Again
IKEA is now actually answering their phone at the Canton, Michigan location.
Last time we went in person, they were out of both the bookcases and the
standing desks I wanted to buy. The standing desks were supposed to come back
into stock this week. Apparently they didn’t. There’s no word on when either
the desks or the bookcases might be back in stock.

I mentioned that Grace and I had recorded another podcast episode, but did
not include the link to the blog post with all the information. It’s here.

I’ve also gone through some old memory cards and found two more recordings
that I could turn into episodes. I listened to them today. One is from April 3rd,
and it’s just me, taking a walk. The second is from June 14th, the day before I
went back to my job. I’ll probably make an episode of at least the latter and
possibly the former as well, although I am hesitating because right now it hurts
to use my mouse or keyboard.

Ergonomics
Years ago I used those Apple ergonomic keyboards that came with wrist rests and
were hinged to allow the keys to split apart. I found that they helped my carpal
tunnel syndrome. But unfortunately these were not built to last; the electronics
failed after only a few months of use. The product was quickly discontinued. I
bought refurbished units, and went through two of them before giving up. They
are very obsolete now, even if you can find a working unit, because they used
the now long-defunct “Apple Desktop Bus” port, and computers that support
that port are largely in landfills now.

Today I ordered a modern adjustable keyboard, in the hopes that it will provide
a little relief from the pain I’ve been experiencing recently. It’s an Ergodox EZ.
It looks to be a lot nicer than the old Apple keyboard. And one of the reasons I
chose it is that the iFixit web site gave it a repairability rating of ten points, the

7

https://www.youtube.com/watch?v=YQinzWG_p1w
http://pottscast.blogspot.com/2020/08/conversation-60-their-goal-is-to-troll.html
https://en.wikipedia.org/wiki/Apple_Adjustable_Keyboard
https://ergodox-ez.com/
https://www.ifixit.com/Guide/ErgoDox+EZ+Keyboard+Repairability+Assessment/125077

maximum. So, I have hopes that I might be able to keep it working longer than
the old ones.

My Orwellian Bookshelf
Yesterday I received a boxed set of four large paperback books, Orwell’s Collected
Essays, Journalism, and Leters, edited by Sonia Orwell and Ian Angus, and
published by Harvest Books. These particular collections are long out of print,
but there are plenty of copies available on eBay and Alibris, and most of the
essays are available elsewhere, including online. The arrival of this boxed set
completes my long-planned shelf of Orwell’s work, although at the moment,
because I haven’t been able to acquire more of the bookcases I want, I don’t
have an empty shelf for the books. They are:

This boxed set of Collected Essays, Journalism, and Letters, comprising:

• Volume 1: An Age Like This 1920-1940
• Volume 2: My Country Right or Left 1940-1943
• Volume 3: As I Please 1943-1945
• Volume 4: In Front of Your Nose 1945-1950

Two Modern Library editions, a very fat one and a very thin one:

• Essays
• Animal Farm

The Folio Society “Reportage” boxed set, comprising:

• The Road to Wigan Pier
• Down and Out in Paris and London
• My Country Right or Left
• Homage to Catalonia
• Funny But Not Vulgar

The Folio Society boxed set of Orwell’s novels, comprising:

• Nineteen Eighty-Four
• Coming Up for Air
• A Clergyman’s Daughter
• Burmese Days
• Keep the Aspidistra Flying

And one more volume, also from the Folio Society:

• A Life in Letters and Diaries

The Folio Society volume My Country Right or Left does not have the exact same
content as volume 2 of the Collected Essays, Journalism, and Letters, although
there is some overlap, including of course the essay of that name.

There is quite a bit of overlap between the Essays collection and the Collected
Essays, Journalism, and Letters volumes, and between these collections and the

8

two volumes of the “Reportage” set that are essay collections, My Country Right
or Left and Funny But Not Vulgar. Ideally I would have been able to find a set
of volumes that had everything without any overlap, but there is no such set,
and in any case I acquired these volumes over time, opportunistically.

Animal Farm is a novella of only about 30,000 words, and so it was not included
in the boxed set of novels; that’s why I tracked down a copy of the very nice
Modern Library edition.

It is a joy to dip into these volumes. I think I have mentioned that I read the
kids Down and Out in Paris and London as a bedtime story. It’s time to read
them Animal Farm. There is a lot of material here that I haven’t ever read. I’ve
read Nineteen Eighty-Four and Animal Farm, of course, but I’ve never read any
of his other novels. I’ve read some of the essays collected in the “Reportage” set,
but by no means all of them. And I’ve never read The Road to Wigan Pier and
Homage to Catalonia.

I wrote on Twitter that:

Reading Orwell’s essays, I so often have the shock of recognition that
comes from reading an insight I have had, but which he articulated.

In “Why I Write,” Orwell writes:

What I have most wanted to do throughout the past ten years is
to make political writing into an art. My starting point is always a
feeling of partisanship, a sense of injustice. When I sit down to write
a book, I do not say to myself, ‘I am going to produce a work of art’.
I write it because there is some lie that I want to expose, some fact
to which I want to draw attention, and my initial concern is to get
a hearing. But I could not do the work of writing a book, or even
a long magazine article, if it were not also an aesthetic experience.
Anyone who cares to examine my work will see that even when it is
downright propaganda it contains much that a full-time politician
would consider irrelevant. I am not able, and do not want, completely
to abandon the world view that I acquired in childhood. So long
as I remain alive and well I shall continue to feel strongly about
prose style, to love the surface of the earth, and to take a pleasure in
solid objects and scraps of useless information. It is no use trying
to suppress that side of myself. The job is to reconcile my ingrained
likes and dislikes with the essentially public, non-individual activities
that this age forces on all of us.

The sunflowers, over twelve feet tall, have finally opened flowers, and there are
heaps of herbs ready to harvest. I’m going out again, to “love the surface of the
earth, and to take a pleasure in solid objects and scraps of useless information.”

9

http://www.george-orwell.org/Why_I_Write/0.html

Thursday
Drunken Master (1978 Film)
Last night I watched the second half of Drunken Master with the boys. This film
is one of Jackie Chan’s early successes. Chan plays Wong Fei-hung, a historic
figure in Chinese medicine and martial arts. Wong is a ne’er-do-well who is very
good at the more traditional animal styles of Kung Fu. In folklore, Wong was
taught by So Chan, nicknamed Beggar So. So Chin is played in this film by
Yuen Siu-tien, who was in his mid-sixties, and who died in 1979.

These are old stock characters and there are a lot of stories about them; there’s
even an HBO Asia wuxia film film from 2017 about Beggar So, called Master of
the Drunken Fist. Drunken Master is not really in the fantasy-oriented wuxia
style, but is more of a Kung Fu comedy, in the genre sometimes labeled “chop
socky.”

The story is really just an excuse for many, many fight scenes. After Wong gets
in trouble once too many times, his father disowns him, and throws him out. He
discovers that despite his traditional fighting skills, there are martial artists out
there who can handily defeat him with their unconventional individual styles.
Wong is reduced to begging and stealing, literally reduced to running around in
only his underpants, until Beggar So begins training him, initially against his
will, as the training seems more like torment and humiliation. But we eventually
learn that Wong’s father asked Beggar So to train his son, and that the training
will take one year.

Beggar So is a master of a form of Drunken Boxing called “The Eight Drunken
Immortals.” Drunken Boxing is real — it describes styles of Chinese martial arts
where the fighters imitate the relaxed movements of a drunk person.

The film itself is a little problematic; we watched it and enjoyed it, but I
can’t whole-heartedly recommend it without providing a few details. The
characterizations are extremely broad. Some seem bigoted, such as a character
who is, I think, supposed to be Japanese, with grotesque buck teeth. The
drunken master is actually an alcoholic, with a made-up red nose, and this is
played for constant laughs, even when he has the shakes.

The fight choreography tends towards the sillier side of the genre. In the dubbed
soundtrack, there are slapping noises heard whenever a fighter moves a fist or
foot, even when it doesn’t actually strike anyone. Imagine the Three Stooges if
they did Kung Fu, and you’ll have a partial idea of what some of the film’s fight
scenes are like.

Just about every dumb and gross gag imaginable winds up incorporated into the
film. For example, in one scene, the bad guys punch Wong in the belly to make
him vomit up, one by one, the courses of a huge restaurant meal he’s just eaten
and refused to pay for. That’s a bit hard to watch, even if you have a strong
stomach. There are testicle-crushing gags, gags involving hitting bad guys on the

10

https://www.youtube.com/watch?v=HLpySM9rfWg
https://www.youtube.com/watch?v=HLpySM9rfWg
https://en.wikipedia.org/wiki/Drunken_boxing

head with a hammer, and gags involving bad guys getting faces full of manure.
There are very sexist moments played for laughs, although Wong is redeemed of
his sexism somewhat in the final fight scene, when he finally learns to adopt the
fighting style of Drunken Immortal and pedagogical archetype “Drunken Miss
Ho,” which he has previously refused to do. It’s a weird take on getting in touch
with one’s feminine side.

So, I’ve got mixed feelings about the film — it’s dumb as hell, and there is plenty
to offend. I couldn’t really blame anyone for turning it off. But it’s also often
funny, if a bit on the sadistic side. Chan and the other actors display incredible
agility and speed in the fight scenes, even though the scenes are broadly comic.
Chan also shows off his impressive strength in the scenes illustrating Wong’s
training.

I wouldn’t want to leave the kids with the impression that drinking heavily
will give them superb fighting abilities; Beggar So tosses Wong a gourd full of
straight moonshine in the final fight scene, and only after chugging it down is
Wong able to reach the highest level of drunken — literally drunken — boxing
prowess. But I would also hate to deprive the kids of the chance to see such
amazing fighting and training sequences.

The kids wanted to watch it with the English soundtrack turned on, because
not all of them can keep up with subtitles yet. But I highly recommend turning
on the Chinese soundtrack instead, and watching it with English subtitles. The
excessively silly sound effects and speech styles were not part of the original film,
and it is a lot easier to bear when these distractions are removed and the film is
allowed to speak for itself.

A technical note on the film: we watched a used copy of the 2002 Sony Pictures
DVD release of the film, which I found on eBay. The digital transfer does not
look great. It doesn’t seem like much restoration work was done, and there are
sections of the film that contain visible scratches and dirt, especially in the first
few scenes. It is watchable, but really could use a full restoration treatment.
There are other editions out there, including a “Masters of Cinema” region-free
restored Blu-ray, but these editions are much more expensive, and since I have
not seen them, I can’t vouch for them.

Garden Update
The Amish Paste tomatoes are ripe and last night Grace roasted a big tray of
them, to blister the skins and concentrate the flavor a bit. Then this morning
she pulled the skins off and will put the tomatoes into the freezer to go into a
future Sunday Gravy. We didn’t actually cook them into paste this time. It’s
been hard to get a lot of time in the kitchen, and since it’s been quite hot this
week, no one has wanted to stand over a steaming pot in a hot kitchen. But
they will add some great texture and flavor to slow-cooked sauces just the same.

We’ve also got a heap of Black Crim tomatoes, but fortunately they haven’t

11

been ripening faster than we can eat them. So every night I’ve been eating fresh
slices of these delicious monster tomatoes sprinkled with a bit of salt and pepper
and nothing else.

I’ve been harvesting herbs while we can. The dill is producing only seed heads
now, so there are no more tender leaves. The basil is probably just about done
for the year. Most of the basil plants appear to be dead or dying, although we
might get a few more good leaves from the lemon and lime basil plants. But
there are more herbs that we can eat now or try to preserve.

I’ve made a number of rolls of butter mashed up with single herbs. I simply
chop up fresh herbs and fold them into softened unsalted butter. Then I lay out
three layers of plastic wrap on the counter, spoon out the butter onto the plastic
wrap, and cajole it into the shape of a log, then roll it up tightly. Then I put
these logs into the freezer. I’ve made them with caraway, thyme, sage, French
tarragon, dill, chives, and both green and bronze fennel. I will make a few more
with sage and chives, and maybe dill if there are some tender leaves left in the
back yard, because I expect those kinds to be popular. I have not tried it yet,
but I’ve read that plain pasta tossed with sage butter is delicious, and I know I
am very fond of both dill and chives in potato dishes.

If I Could Save Thyme in a Baggie
We drying some herbs, such as peppermint and stevia, but I’m also experimenting
with freezing whole sprigs of some of the herbs — the ones with less water
content in their leaves. Last night I gave the French cooking thyme, silver thyme,
variegated lemon thyme, orange thyme, and lime thyme severe haircuts. I stuffed
handfuls of each kind of thyme sprig into baggies, squoze out the air, and then
labeled and froze them. I’m told the frozen thyme won’t be quite as flavorful
as fresh thyme, but will still have more flavor than fresh. I also hacked the
creeping rosemary plant way back and stuffed a baggie with rosemary sprigs.
There’s enough to stuff sprigs into many whole fish before roasting them, or to
flavor many trays of roasted potatoes, or to sprinkle over whole chickens. After
handling all these aromatic herbs, my hands smelled wonderful for hours.

I had to quit working on this project last night and come inside because the
mosquitoes were swarming, but I want to freeze more rosemary varieties, and
some whole sage sprigs, too. The parsley plants have grown only very slowly
for most of the season, but right now they are shooting up rapidly. So I will
freeze some parsley. One of my herb cookbooks suggests bagging up parsley and
freezing it, and then when taking it out of the freezer, immediately smashing up
the stiff frozen parsley sprigs while they are still in the bag, rather than chopping
it. So I am looking forward to trying that.

I will try freezing some whole anise hyssop leaves, too.

Some of the herbs with softer leaves might require a different strategy — taking
the leaves off of the sprigs, and freezing them in water, into ice cubes. This

12

method might be especially useful for mint leaves that are off the stems. Folks
also freeze herbs in oil, so I might try freezing oregano in oil.

(The Next) Tuesday
Well, my Sunday deadline came and went and I didn’t get this newsletter finished,
and then I didn’t get it finished on Monday either. So this one is going out a
couple of days late, and I am uncertain about Sunday’s issue. A few things have
happened so I will share those things briefly today and then get this wound up.

Crashing the Art Scene
On Saturday, Grace and I took the kids to the Detroit Institute of Arts. They
have a special program in August to let groups in for free, but you have to
reserve times in advance. They are limiting the number of people in the facility.
So we loaded everyone up and off we went.

The staff was not screwing around when it came to COVID-19 safety, with arrows
indicating the direction of foot traffic and signs everywhere promoting 6-foot
distancing. Everyone was masked. So we put masks on everyone, including
Malachi and Elanor and, of course, Elanor’s doll. The two babies were not so
good at retaining their masks, and seemed to think the masks were food, but we
did our best.

Our first stop was in Rivera Court housing the famous Detroit Industry murals
by Diego Rivera. I have seen the murals before, but I am always happy to see
them again. They are stunning. I am so glad that they are still there, a landmark
artistic and political statement. The courtyard has an enormous skylight, and so
it is sunlight that illuminates the murals. This means that they look different at
each moment in time. They were painted on plaster using the “fresco” technique
and so the colors are still very vivid, but no doubt they are gradually suffering
damage from the sunlight. It is humbling to consider. Instead of bricking up the
ceiling to preserve them, the Institute has chosen to continue to present them to
visitors the way they were originally created.

I really enjoyed our visit but there were some difficulties. With my injured
shoulder I could not carry a baby in a backpack, push a stroller, or even pick
up a baby. So I felt slightly useless. Keeping everyone moving and keeping
everyone from wandering off or getting too close to the artwork is a continual
strain, especially when one of the younger kids decided he was through with the
D.I.A. long before the rest of us were planning to leave. We certainly didn’t
try to see everything. We took Joshua to see the Modern collection, which
was disappointing, and then we took the kids to see the Japanese section. We
wanted to look at a few more paintings on our way out — some by Van Gogh, a
borrowed Frida Kahlo self-portrait, and some borrowed works by Dali.

The Kahlo portrait is intriguing — it shows her trademark unibrow and facial hair,

13

https://www.dia.org/riveracourt

and in this one she portrayed herself with a very long neck. In the background
is a money. So we talked about symbolism in paintings and what it might mean.
The works by Dali were small and hard to see clearly, unfortunately.

You know how they say “quit while you’re ahead?” Yeah, we probably should
have done that. And so we unfortunately had an incident which cast a pall over
the day. Two of the older kids — old enough to know better — tried taking
a selfie in front of a self-portrait by Van Gogh. Being awkward adolescents,
they somehow lost track of exactly where their bodies were with respect to the
paintings and so one of our children accidentally shoulder-checked a Van Gogh.
That was really not ideal.

The frame is not the kind of frame you might pick up at Target and it was not
hung the way you or I might hang a piece of art on a wall, and it was mounted
behind protective glass or plexiglass, so the painting was not harmed, but it
was a hugely stressful and embarrassing moment, and led to a very apologetic
discussion with a security guard. And so from there we took everyone out of the
building as quickly as we could, which unfortunately when traveling with seven
children, means “with painful slowness.” But no one was arrested and (we hope)
no one will be appearing on social media in a viral video taken from security
camera footage.

We’ve since had several long talks with our awkward adolescents. If we go back
to the D.I.A., Grace will take a smaller group. It is just too stressful to take
everyone.

Scotch Bonnet Time
The rabbits have taken to climbing right into the pepper bed and have been
eating up the plants from below, even while the fruits above continue to develop
and ripen. We’ve recently been seeing peppers with bites taken out of them,
apparently spat out and discarded in favor of the leaves. So, we have now put a
fence around the pepper bed.

There are more ripening, but so far we have only managed to pluck one undam-
aged, ripe, brilliant yellow-orange Scotch Bonnet pepper. I was very excited to
taste it so I challenged all the kids to join me in slicing it up and eating it like
an apple. Only one of my strong sons and strong daughters was brave enough
(or, perhaps, foolish enough) to join me, but I am pleased to report that might
Sir Joshua of the Stout Heart and Scorched Tongue didst dine with me upon
that pepper. And he and only jumped around and waved his arms and guzzled
coconut milk a little bit.

Scotch Bonnet peppers are quite hot — they are probably the hottest peppers
that I’m willing to eat raw like this, but of course they also go into jerk sauces
and salsas, and one will nicely flavor a whole pot of whatever you care to cook
with it.

There are much hotter peppers now — ghost peppers and Carolina Reapers

14

and other extremely hot peppers — but I don’t actually want to wind up with
anaphylactic shock, and some of these extremely hot peppers can do that to a
person; they are better suited to chemical warfare than to cuisine, in my opinion.
But this Scotch Bonnet was delicious. They have a fruity flavor alongside the
slow-growing heat. The initial burn is pretty intense, but it fades quickly, and
subsequent bites don’t seem nearly as hot. And eating hot chili peppers gives
me a buzz — an endorphin rush similar to a runner’s high. Keep in mind that if
you are going to chop up or handle these peppers, you should wear disposable
gloves, because they will leave your hands red and irritated, and you’d better
make sure your hands are completely free of any residue from the peppers before
touching your face.

Mosquito Assault
It was threatening to rain all weekend — rain was in the forecast — and some
storm clouds blew past but dropped almost no rain. So on Sunday evening I
went out to harvest some herbs and water the plants and the mosquitoes were
crazier than ever. I came back with a couple of dozen bites, including bites all
over my forehead, which hadn’t happened to me before, and I did not feel it
happening at the time, but a mosquito had bitten my eyelid. My eyelid was
very swollen. I was starting to have a mild fever and waves of joint pain from
my body’s immune response, so I took a big dose of Benadryl to knock it down.

It took the swelling and itching and joint pain improved immediately, and an ice
pack on my eye did the rest. But the Benadryl made me pretty useless for the
rest of the evening, and so I did not finish the newsletter. The babies did not
want to let me sleep, and so despite the medication, I couldn’t really get to sleep
until after 2:00 a.m. I was planning to work from home on Monday, but Monday
morning, bright and early, I got an urgent phone call from the office — they
were having a problem with one of our instruments in producting, and it needed
to ship today, so I needed to come in immediately and fix it. I had not entirely
shaken off the Benadryl, but Grace made me a large coffee and I packed up a
few things from my home office and got in to the office as quickly as I could.

And so I’m back in the office this week, at least for a few days. I brought some
more gear back in. My shoulder is still very touchy. I had one of my co-workers
help me bring some things in from my car. It causes me considerable pain to
lift anything above my waist with my right arm, and it is painful at night. I
think that means this is likely a rotator cuff injury, and those are unfortunately
notorious for taking a long time to heal. I took an ice pack in to the office to
use during a couple of times during the day.

Everyone is wearing masks at the office now.

Last night we harvested our first few potatoes! They were small, and there
weren’t very many, but we expect to find more in the other beds.

Have a great week!

15

About This Newsletter
This newsletter by Paul R. Potts is available for your use under a Creative
Commons Attribution-NonCommercial 4.0 International License. If you’d like
to help feed my coffee habit, you can leave me a tip via PayPal. Thanks!

16

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://paypal.me/coffeeunderachiever

	Tuesday
	Python 2020: Lots of Movement, Little Improvement

	Wednesday
	IKEA, Again
	Ergonomics
	My Orwellian Bookshelf

	Thursday
	Drunken Master (1978 Film)
	Garden Update
	If I Could Save Thyme in a Baggie

	(The Next) Tuesday
	Crashing the Art Scene
	Scotch Bonnet Time
	Mosquito Assault

	About This Newsletter

