
Thinking of an Animal

Paul R. Potts

March 2023

Getting Back to BASIC with ANIMAL.BAS

Here’s a super-nerdy topic for you: a BASIC computer game I first came across
about 45 years ago called “ANIMAL.” This appeared in several different books
of BASIC computer games edited by David H. Ahl. The book I’ve got, BASIC
Computer Games: TRS-80 Edition, says that Animal was “originally developed
by Arthur Luehrmann at Dartmouth College” and “subsequently shortened and
modified by Nathan Teichholtz at DEC and Steve North at Creative Computing.”

It would have been back in 1979 or so when I bought my copy of BASIC
Computer Games: TRS-80 Edition at my local Radio Shack store in Harborcreek,
Pennsylvania. My original copy is long-gone. In the past, I had occasionally
searched for copies, but only found copies that were very expensive or in poor
condition. But just recently one of my saved searches found a listing for both the
original book and the harder-to-find sequel, BASIC Computer Games, Volume
Two: TRS-80 Edition, for a price I thought was quite reasonable, so I bought
them immediately. Here’s the first one:

Here’s a bit of page 4 showing the start of Animal:

I did a little demo of this game for Sam and Pippin, using a TRS-80 emulator. I
was trying to show them what it was like to program early home computers back
in the day, warts and all. As a kid, I spent a lot of time typing in programs from
magazines and books, and then debugging them, because getting a program
typed in perfectly, from a shrunken reproduction of a dot-matrix printout, on
the first try, is nearly impossible. Here’s what part of the code looks like in the
book:

Typing in these programs, and then having to debug them to find all the errors,
both in the printed code and introduced when typing them in, forced many
hobbyists with no previous background in programming to become experts in
BASIC. My TRS-80 BASIC is pretty rusty and my eyes are worse than they
were in 1978, so I was slow at this, and was only able to get it partially working
during that little demo, although I did manage to fix it later.

If you want to give it a try, you can find the source code here. I know that David
Ahl has made at least one version of his source code available to the developer

1

http://www.vintage-basic.net/games.html

Figure 1: “BASIC Computer Games: TRS-80 Edition”

2

Figure 2: “Page 4: Animal”

3

Figure 3: “Part of the Animal BASIC Code”

of Vintage BASIC for distribution, but I haven’t seen a clear indication that
he has placed all the BASIC games, in all their various versions, in the public
domain, so I will not include the full source code from the TRS-80 edition in this
article. If you want to see the exact version of the code that I’ve been running,
the Internet Archive has it here. Unfortunately, it’s a pretty fuzzy scan.

BASIC Considered Painful

It’s funny to think back on it, but from my perspective in 2023, this BASIC code
from the 1970s reads more like a assembly language, with a few macros to support
commonly used functions such as printing. This BASIC programming is not
nearly as bad an example of “spaghetti code” as many of the published programs
I used to type in, but even so, it’s more opaque than most assembly-language
programs, because most assembly-language programs are thoroughly commented
and many use macros.

Comments ate up valuable memory and required extra typing, so they were
often omitted. Many things were sacrificed in the name of saving memory. And
don’t get me wrong, I really admire what the folks who developed code for these
early home computers were able to accomplish! But let’s not pretend that the
surviving artifacts of that era are all that easy to understand.

Aside from the FOR…NEXT loops, TRS-80 BASIC code doesn’t even follow
the basic tenets of Structured Programming, much less functional programming

4

https://archive.org/details/Basic_Computer_Games_1978_David_Ahl
https://en.wikipedia.org/wiki/Structured_programming

or object-oriented programming. Perhaps it’s not surprising that I found it
relatively easy to start teaching myself Z-80 assembly language programming,
alongside BASIC, back in the late 1970s as well; it wasn’t necessarily any harder
to understand than highly condensed BASIC code.

I should point out that there are more modern versions of BASIC that do support
more modern programming styles. You can get rid of line numbers, and factor
your code into functions. The original Microsoft Visual BASIC, which I used
back in the early 1990s, was much easier to use, and the programs I wrote in it
were much more readable and maintainable.

Playing ANIMAL

Here’s a sample session playing the TRS-80 version of the game using an online
TRS-80 emulator to give you an idea of why I found the game interesting, and
still do. The original TRS-80 only supported uppercase letters, unless you
installed a clever third-party product, but for clarity, in this log, I have left the
computer’s output uppercase, but changed my input into lowercase:

PLAY 'GUESS THE ANIMAL'
THINK OF AN ANIMAL AND THE COMPUTER WILL TRY TO GUESS IT
ARE YOU THINKING OF AN ANIMAL? yes
DOES IT SWIM? yes
IS IT A FISH? yes
WHY NOT TRY ANOTHER ANIMAL

ARE YOU THINKING OF AN ANIMAL? yes
DOES IT SWIM? yes
IS IT A FISH? no
THE ANIMAL YOU ARE THINKING OF WAS A? penguin
PLEASE TYPE A QUESTION THAT WOULD DISTINGUISH A PENGUIN FROM A FISH
? does it look like it is wearing a tuxedo
FOR A PENGUIN THE ANSWER WOULD BE: yes

ARE YOU THINKING OF AN ANIMAL: yes
DOES IT SWIM? yes
DOES IT LOOK LIKE IT IS WEARING A TUXEDO? yes
IS IT A PENGUIN? yes
WHY NOT TRY ANOTHER ANIMAL

etc.

How It Works

As you can see, the game cleverly builds up a database of animal names along
with questions it can use to filter the database. Each question must have a
simple “yes” or “no” answer. With each question the game presents, it eliminates

5

https://en.wikipedia.org/wiki/Visual_Basic_(classic)
https://lkesteloot.github.io/trs80-emulator/

animals until there is a single candidate remaining. If the remaining candidate is
not the right answer, it prompts the user to enter a new animal into its database.

It’s not entirely obvious from reading the source code how this works, as old
versions of BASIC required variable names that were quite opaque, and the
original game did not contain any comments. So, allow me to clarify it a little
bit. The initial database can be seen by typing “LIST” at the “ARE YOU
THINKING OF AN ANIMAL?” prompt:

ANIMALS I ALREADY KNOW ARE:
FISH BIRD

Looking at the BASIC source code, you can find where these two starter database
entries are defined, and this gives the reader a starting point from which to
unpack the way the program works:

600 DATA"4","/QDOES IT SWIM/Y2/N3/","/AFISH","/ABIRD"

We see that the following strings are defined:

"4"
"/QDOES IT SWIM/Y2/N3"
"/AFISH"
"/ABIRD"

These are used by the program’s startup code:

80 CLEAR 5000: DIM A$(200)
90 T=1
100 FOR I=0 TO 3
110 READ A$(I)
120 NEXT I
130 N=VAL(A$(0))

These strings are put into the array of strings called A$. In this early dialect of
BASIC, we know that A$ is an array because of the DIM (dimension) statement,
which indicates it is a one-dimensional array of 201 elements, and because it is
usually accessed using a subscript in parentheses. Why 201 and not 200? That’s
another oddity of BASIC; the first element of the array is accessed with the
subscript 0, but DIM allocates one extra element so that the highest subscript
you can access is the same as the dimension.

Confusingly, plain old A$ is also used in this program to hold user input, and it
is a single string, not an array.

Also confusingly, the initial value of N is placed, in string form, in the first string
in the array of strings, at subscript 0. This string is updated when new animals
are added to the array. Why is it kept here, instead of in a separate variable? I
don’t know.

“DOES IT SWIM?” is our initial question, stored without the question mark,
with the header “/Q” indicating that it is a question, and followed by indexes

6

for which table entry to look at next for “YES” and “NO” answers. This follows
the initial behavior: if you answer “YES” to the first question, the program will
ask whether the animal is a fish (index 2), or else whether the animal is a bird
(index 3).

Inserting a few lines to dump out the contents of the A$ array, it becomes clearer
what is happening as the program runs:

A$ NOW CONTAINS:
4
/QDOES IT SWIM/Y2/N3
/AFISH
ABIRD

ARE YOU THINKING OF AN ANIMAL? yes
DOES IT SWIM? no
IS IT A BIRD? no
THE ANIMAL YOU WERE THINKING OF WAS A ? BAT
PLEASE TYPE A QUESTION THAT WOULD DISTINGUISH A
BAT FROM A BIRD
? does it catch bugs using sonar
FOR A BAT THE ANSWER WOULD BE ? no

A$ NOW CONTAINS
6

/QDOES IT SWIM/Y2/N3
/AFISH
/QDOES IT CATCH BUGS USING SONAR/Y 5/N 4
/ABIRD
/ABAT

ARE YOU THINKING OF AN ANIMAL? yes
DOES IT SWIM? yes
IS IT A FISH? no
THE ANIMAL YOU WERE THINKING OF WAS A ? seal
PLEASE TYPE A QUESTION THAT WOULD DISTINGUISH A
SEAL FROM A FISH
? does it breathe water
FOR A SEAL THE ANSWER WOULD BE ? no

A$ NOW CONTAINS
8

/QDOES IT SWIM/Y2/N3
/QDOES IT BREATHE WATER/N 7/Y 6
/QDOES IT CATCH BUGS USING SONAR/Y 5/N 4
/ABIRD
/ABAT

7

/AFISH
/ASEAL

Note that the program is rearranging the elements of A$. It’s doing this to
maintain a binary tree structure, hidden in the array, that reflects the order in
which the questions should be asked. This ensures that it doesn’t ask redundant
questions. The questions are the inner nodes of the tree, starting from the root,
which is always “Does it swim?” The animals to guess are the terminal nodes,
or leaves of the tree.

Most of the opaque logic of the program becomes clear when you realize that it
handles inserting items into an array, moving items around to make space for the
new items. This becomes inefficient as the number of array entries grows larger,
but given that we don’t have enough memory to add thousands or millions of
questions to the tree, inserting a new question probably won’t take more than a
few seconds, and asking questions should never take very long, because for each
question the program just follows an index to read one question out of the array.

And Onward to Python

Just to see how hard it would be, I wrote a Python version. It only took me a
couple of hours to get a program that worked correctly, but I spent a few more
hours over the next couple of days tidying up the code, refactoring it into smaller
functions, and improving the comments; I wanted the chance to sleep on it and
come back to it with fresher eyes.

I first started by writing the routine to print out the tree, and once
I had that, the rest was very easy, except for the slightly tricky logic
that inserts new questions. The function that inserts a new question
into the tree needs to keep track of whether the guess that failed is the
“yes” leaf or the “no” leaf of the parent question. In the Python version
I handle this by the insert_new_yes_branch_q_node() and in-
sert_new_no_branch_q_node() functions. In my first version, I used a
smaller number of longer functions, with more branching, but I have refactored
it so that the functions are very short, to try to make the logic as easy to follow
as possible.

Following the behavior of the BASIC program, the root question node is never
replaced — that is, the original program always starts off by asking “DOES IT
SWIM?” This means the tree can become unbalanced. It would be an interesting
upgrade to the program to have the program always rebalance the tree when
it adds questions, so that it always asked the minimum necessary number of
questions to reach an animal to guess. If I wanted to do that, I’d probably go
ahead and convert it to use idiomatic Python objects, to make it easier to treat
the nodes uniformly, and then I’d probably break it into multiple files. But for
now I wanted to avoid the extra boilerplate that is required for object-oriented
programming in Python. I like many things about Python, but not the way it
handles OOP.

8

My program is over twice as long as the original, if you count lines of text, but
a lot of those lines are comments and whitespace. It’s broken into functions. I
know that I’d much rather type the Python version into a computer than the
BASIC version — and modern tools like Visual Studio Code, which does syntax
highlighting and indicate a lot of problems and possible solutions while you’re
typing the code, makes it far, far easier to debug than the BASIC version. I’m
not going to claim that Python is the ultimate language — there are a lot of
things about it I don’t like, mainly having to do with the lack of strict typing,
which leads to failure to catch many errors prior to runtime. But at least I have
source-level debugging and can watch variables change as I step through code.
Looking back at how I used to have to write and debug programs, it is most
definitely an improvement in many ways!

You can find this source code on GitHub.

"""
A very simple version of the classic Animal guessing game, originally published
in various editions of David H. Ahl's _BASIC Computer Games_ books back in the
1970s.
"""

import sys

The original program used a BASIC DATA statement to populate an array of
strings that serve as tree nodes, and refer to each other by array indices.
This Python version implements the same initial tree nodes using
dictionaries. There are two kinds of nodes: question nodes, which always
appear in the tree with two leaf nodes, and guess nodes, which are the
leaves.
#
Following a path through question nodes, the program asks a series of
questions to narrow down the options, until it reaches a guess node, and
presents an animal name to the user. If the guess is incorrect, the program
replaces the original guess node with a new question node that has as its
leaves the original guess node, and a new guess node created with the animal
name the user types.
#
In this way, as the user interacts with the program, the tree will grow. The
original program never replaces the root node, and the tree is never
re-balanced to minimize the number of questions it takes to get to a guess.
"Does it swim?" is always the first question. I have kept that behavior, but
support for re-balancing the tree would be an interesting future upgrade to
the program.
g_node_fish = {"A":"a fish"}
g_node_bird = {"A":"a bird"}
q_node_root = {"Q":"Does it swim?",

"Y":g_node_fish,

9

https://github.com/paulrpotts/thinking-of-an-animal

"N":g_node_bird}

Convenience functions for reading and formatting user input of various kinds.
The original program didn't do much to clean up user input, so we don't
either, assuming a cooperative user, but we're not as obsessed with saving
every possible byte, so we do a few things differently:
- We keep whatever the user types as the animal name, so you shouldn't see
incorrect grammar like "a octopus" unless the user typed it that way.
- We turn animal names into lowercase, so the computer won't ask "Is it An
octopus." This could results in incorrect capitalization for animal names
containing proper nouns; for example, if the user types in "a Jack Russell
terrier," the guess will be "Is it a jack russell terrier?" The alternative
would be some kind of validation of animal names, which is out of scope for
this simple program.
- We make sure that when we request a question from the user, it starts with
a capital letter and ends with a question mark, so if the user typed "does
it have four wings and fly," the question will be stored as "Does it have
four wings and fly?"
def get_one_word_answer() -> str:

return sys.stdin.readline().strip().lower()

def is_answer_affirmative(answer_str:str) -> bool:
return answer_str[0] == 'y'

def is_answer_tree(answer_str:str) -> bool:
return answer_str[0] == 't'

def get_answer() -> str:
return sys.stdin.readline().strip()

def get_animal() -> str:
return get_answer().lower()

def get_question() -> str:
q_str = get_answer().lower().capitalize()
if q_str[-1] != '?':

return q_str + '?'
else:

return q_str

def get_q_answer(new_a_str:str) -> bool:
print('For ' + new_a_str + ', what is the answer?')
return is_answer_affirmative(get_one_word_answer())

Make a new guess node with a new animal name.
def make_g_node() -> dict:

10

print('What animal were you thinking of? ')
return {'A':get_animal()}

Make a new incomplete question node, with a new question to distinguish
between the correct animal and the animal we incorrectly guessed.
def make_q_node_with_q_only(correct_a_str:str, incorrect_a_str:str) -> dict:

print('Please type a yes-or-no question that would distinguish ' \
+ correct_a_str + \
' from ' + incorrect_a_str + ':')

return {'Q':get_question(),
'Y':None,
'N':None}

Complete the question node by setting the old and new guess child nodes. To
do this we need the answer to the question that distinguishes between the
correct animal and the animal we incorrectly guessed.
def attach_g_nodes(new_q_node:dict, incorrect_g_node:dict,

correct_g_node:dict) -> None:
Arrange the guess nodes according to whether the new animal should be
be reached by a "yes" answer or a "no" answer.
if get_q_answer(correct_g_node['A']):

new_q_node['Y'] = correct_g_node
new_q_node['N'] = incorrect_g_node

else:
new_q_node['Y'] = incorrect_g_node
new_q_node['N'] = correct_g_node

Make a new question node, along with its children. This requires asking for
a new animal name, a new question to distinguish between the correct animal
and the animal we incorrectly guessed, and the answer to that question.
def make_new_q_node(q_node:dict, g_node:dict) -> dict:

new_g_node = make_g_node()
new_q_node = make_q_node_with_q_only(new_g_node['A'], g_node['A'])
Complete the question node by setting the old and new guess child nodes.
attach_g_nodes(new_q_node, g_node, new_g_node)
The new question node will be inserted into the tree in place of the old
guess node.
return new_q_node

Add a new question node to the "yes" branch of an existing question node.
def insert_new_yes_branch_q_node(q_node:dict, g_node:dict):

new_q_node = make_new_q_node(q_node, g_node)
Change the parent's "yes" dictionary entry.
q_node['Y'] = new_q_node

Add a new question node to the "no" branch of an existing question node.

11

def insert_new_no_branch_q_node(q_node:dict, g_node:dict):
new_q_node = make_new_q_node(q_node, g_node)
Change the parent's "no" dictionary entry.
q_node['N'] = new_q_node

This function handles a guess node, which is always a leaf node, containing
an animal name. If the guess is not correct, ask for the correct animal name
and a question we can use in the future to distinguish between the two
animals. This is how the game "learns."
def play_g_node(q_node:dict, g_node:dict, followed_yes_path:bool) -> None:

print("Is it " + g_node['A'] + '?')
if is_answer_affirmative(get_one_word_answer()):

print('Great! Try another animal!')
else:

Add a new question node to the existing question node's "yes" or "no"
branch, depending on the path we took to reach the guess node.
if followed_yes_path:

insert_new_yes_branch_q_node(q_node, g_node)
else:

insert_new_no_branch_q_node(q_node, g_node)

This function handles any pair of parent and child nodes once we've asked at
least one question, and so know if we're following the "yes" branch or not.
Gameplay proceeds with mutual recursion between the pair of functions
play_q_node() and play_node() until a guess node is reached.
def play_node(q_node:dict, node:dict, followed_yes_path:bool) -> None:

if (node.get('Q')):
play_q_node(node)

else:
play_g_node(q_node, node, followed_yes_path)

This function handles any question node including the root. Ask the question,
and then we know whether we're following the "yes" branch or not, and can
call play_node().
def play_q_node(q_node) -> None:

print(q_node['Q'])
if is_answer_affirmative(get_one_word_answer()):

play_node(q_node, q_node["Y"], True)
else:

play_node(q_node, q_node["N"], False)

def play_game(root_q_node:dict) -> None:
The root node is always a question node.
play_q_node(root_q_node)

def get_indent_str(level) -> str:

12

return " " * level * 3

This is a pre-order, depth-first binary tree traversal in disguise. The basic
algorithm is expressed something like this (in pseudocode):
#
function handle_node(node)
do_something(node)
handle_node(node.left)
handle_node(node.right)
#
Our traversal to print the game tree differs in the following ways:
#
- We have two types of nodes, and they are handled differently, rather than
the usual design in which all nodes are the same type, and leaf nodes have
null left and right child pointers or references.
#
- We report the current node question before each recursive call to handle
the left and right subtrees (in our case, the "yes" and "no" subtrees),
instead of just once before both calls. This is to make it clearer which
combination of question and answer brings us to each question or guess
node, because when printing a large tree there can be a large number of
lines from the subtrees printed between the two branches of a question
node.
#
- We have a level parameter, used for indentation.
def print_game_tree(node:dict, level:int):

if (node.get('Q')):
print(get_indent_str(level) + 'Question: ' + node['Q'] + ' -> yes:')
print_game_tree(node['Y'], level + 1)
print(get_indent_str(level) + 'Question: ' + node['Q'] + ' -> no:')
print_game_tree(node["N"], level + 1)

else:
print(get_indent_str(level) + "Guess: " + node['A'])

return

print()
print('Play "Guess the Animal." Think of an animal and the computer will')
print('attempt to guess it. The game gets smarter over time as you teach it')
print('about more animals! This program by Paul R. Potts is based on the')
print('original BASIC game as it appears in the book Basic Computer Games:')
print('TRS-80 Edition, edited by David H. Ahl.')
print()
print('If you would like to see the internal tree of questions and animal')
print('names, type "tree" instead of "yes" or "no" when the program asks')
print('"Are you thinking of an animal?"')

13

while True:
print()
print('Are you thinking of an animal?')
answer_str = get_one_word_answer()
if is_answer_affirmative(answer_str):

Note that the root node is never replaced; the initial question is
always the same. Therefore, we don't need to pass a parent node to.
play_root().
play_game(q_node_root)

elif is_answer_tree(answer_str):
print("Game tree:")
print_game_tree(q_node_root, 1)

else:
print("Goodbye for now!")
break

And here’s a sample log from the above program:

Play "Guess the Animal." Think of an animal and the computer will
attempt to guess it. The game gets smarter over time as you teach it
about more animals! This program by Paul R. Potts is based on the
original BASIC game as it appears in the book Basic Computer Games:
TRS-80 Edition, edited by David H. Ahl.

If you would like to see the internal tree of questions and animal
names, type "tree" instead of "yes" or "no" when the program asks
"Are you thinking of an animal?"

Are you thinking of an animal?
tree
Game tree:

Question: Does it swim? -> yes:
Guess: a fish

Question: Does it swim? -> no:
Guess: a bird

Are you thinking of an animal?
yes
Does it swim?
yes
Is it a fish?
no
What animal were you thinking of?
a seal
Please type a yes-or-no question that would distinguish a seal from a fish:
Does it breathe water?
For a seal, what is the answer?

14

no

Are you thinking of an animal?
tree
Game tree:

Question: Does it swim? -> yes:
Question: Does it breathe water? -> yes:

Guess: a fish
Question: Does it breathe water? -> no:

Guess: a seal
Question: Does it swim? -> no:

Guess: a bird

Are you thinking of an animal?
yes
Does it swim?
no
Is it a bird?
no
What animal were you thinking of?
a bat
Please type a yes-or-no question that would distinguish a bat from a bird:
Does it use echolocation?
For a bat, what is the answer?
yes

Are you thinking of an animal?
tree
Game tree:

Question: Does it swim? -> yes:
Question: Does it breathe water? -> yes:

Guess: a fish
Question: Does it breathe water? -> no:

Guess: a seal
Question: Does it swim? -> no:

Question: Does it use echolocation? -> yes:
Guess: a bat

Question: Does it use echolocation? -> no:
Guess: a bird

Are you thinking of an animal?
yes
Does it swim?
yes
Does it breathe water?
yes

15

Is it a fish?
no
What animal were you thinking of?
an octopus
Please type a yes-or-no question that would distinguish an octopus from a fish:
Does it have eight tentacles?
For an octopus, what is the answer?
yes

Are you thinking of an animal?
tree
Game tree:

Question: Does it swim? -> yes:
Question: Does it breathe water? -> yes:

Question: Does it have eight tentacles? -> yes:
Guess: an octopus

Question: Does it have eight tentacles? -> no:
Guess: a fish

Question: Does it breathe water? -> no:
Guess: a seal

Question: Does it swim? -> no:
Question: Does it use echolocation? -> yes:

Guess: a bat
Question: Does it use echolocation? -> no:

Guess: a bird

Are you thinking of an animal?
no
Goodbye for now!

There Are Lots More

If you found this algorithm interesting, I recommend looking at the large body of
old BASIC games — many are quite imaginative and clever. Try converting one
of them into your favorite language. Half the battle is understanding what the
original BASIC code was doing, as implementing algorithms in BASIC yielded
code that can be pretty hard to read. But if you persist, you can bring lost gems
back to life!

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License. If you’d like to help feed
my coffee habit, you can leave me a tip via PayPal. Thanks!

16

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://paypal.me/coffeeunderachiever

	Getting Back to BASIC with ANIMAL.BAS
	BASIC Considered Painful
	Playing ANIMAL
	How It Works
	And Onward to Python
	There Are Lots More

