
Thinking about Sudoku and Scheme: First Steps
Towards a Solver

Paul R. Potts

January-February 2006 and March 2025

In early 2006, I wrote a series of blog posts describing my attempts to continue
learning Scheme programming by implementing some code to solve Sudoku puzzles.
Sudoku was all the rage at the time so it seemed like a natural thing to do. Working
“in public” like this is both rewarding and a bit risky: rewarding, because if you
come up with some good code, people may find it and make use of it, or jump in
to the conversation. But if you don’t, your failure is left hanging out there in
public for all to see.

I wouldn’t call this exploration a total failure, but it petered out in an unsatisfying
way. The original blog posts got no comments. I did not really get a finished
solver before I had to move on to other paid work — the code I completed could
only take some simple first steps towards solving a puzzle. I don’t feel that
I found the right abstractions that would allow me to best express additional
puzzle-solving strategies. But I did better learn Scheme.

I also got a lesson in how plain R5RS Scheme, a stripped-down dialect of
Lisp with minimalist data structures and standard libraries, may be great for
implementing other Lisp-like languages, but was probably not the best language
to use for this purpose. In fact one can see the development of Haskell as a
reaction, by the functional programming community, to the limited support for
higher-order functional programming concepts in Lisp and Scheme. After learning
some Haskell, R5RS Scheme, without many “batteries” included, feels limited in
expressiveness and tedious to debug. So, I have not felt motivated to chew on this
Scheme implementation further. It’s true that the advanced features of Haskell
can leave merely mortal programmers scratching their heads, but tasteful and
judicious use of Haskell’s features can yield inspiring results. For example, take
a look at the very readable and expressive approach to implementing a Sudoku
solver in Haskell described by Richard Bird in his 2006 paper and in his books
Pearls of Functional Algorithm Design (2010) and Thinking Functionally with
Haskell (2014). I highly recommend either book!

So why would I share an article that shows me failing at a task? Well, I’ve
always believed that we can learn at least as much, if not more, from our failures

1

https://www.cambridge.org/core/journals/journal-of-functional-programming/article/functional-pearl-a-program-to-solve-sudoku/2A2C12F0CAA9A48C1D6697CBFC6A559C

than from our successes! And maybe someone trying to follow the same path I
walked along in 2006 might find this record interesting.

Day 1
I’ve been working on some tools to help me solve Sudoku puzzles in Scheme. That
goal is actually secondary to the goal of learning to write better, more idiomatic
Scheme programs, and so progress towards the Sudoku solver is frequently
interrupted while I backtrack in an attempt to reorganize and optimize the
supporting code.

I’m working on this both in a bottom-up and top-down direction. Bottom up,
to develop something of a domain-specific Sudoku-solving language. Top down,
because my higher-level strategy is not that clear at the outset, and is undergoing
stepwise refinement.

My approach to solving Sudoku by computer is not to recursively explore every
the tree of moves until a solution is found. That approach is easily doable but
less interesting to me than trying to emulate some of the solving strategies that
might be used by a human solver. Ultimately I would like the tool to assist a
human solver, not replace her.

My tool of choice is PLT Scheme version 3.00. Note: PLT Scheme is now known
as Racket. This code should work with #lang r5rs. For reasons to painful to
go into just now, I have currently given up on using either SRFIs or SLIB for
libraries and am writing everything in plain RSR5 Scheme. More on that later.

Day 2
Here is how I implemented some of my array primitives. I’ll start in the middle:

(define map-board-row-elts
(array2D-make-row-elt-mapper board-x-dim))

When treating a vector like a two-dimensional array, assuming that you store it in
row-major order, the key piece of information needed to access elements is the size
of the row. (More generally, for an n-dimensional array, to access an element you
need to know the size of dimensions 1 to n - 1). On the top level of my program,
the dimensions of my Sudoku board are known. But the Scheme array primitives
don’t know the dimensions. Rather than pass this information to every array
access call, I create a function. The function array2D-make-row-elt-mapper
captures the row size using closure and returns another function:

(define array2D-make-row-elt-mapper
(lambda (x-dim)
(lambda (array2D y-idx elt-handler)
(array2D-map-row-elts array2D y-idx x-dim elt-handler))))

2

Note the nested lambda expressions. The top one receives the x-dim parameter,
and the body of this function is another lambda expression. This second lambda
expression is the return value of this function: it returns a function. This
returned function invokes another function, array2D-map-row-elts, which we
haven’t defined yet, which requires an x-dim parameter.

In this case, the purpose of returning this function is to provide the functionality
of another function, array2D-map-row-elts, but without the need to provide
the x-dim parameter. The new function is a curried function. What is a curried
function? Currying means taking a function with n parameters and creating a
new function with n - 1 parameters. The new function provides a default value
for the missing parameter, giving you a simplified API to the original function.

Common Lisp and other languages provide curry and rcurry functions which
peel off parameters from the left or right of the paramter list, respectively. So
our currying may not meet a strict definition, although we are doing the same
thing: providing an interface function that will supply a value for one of the
original parameters. Currying often uses a constant for these default parameters;
in our case, we’re using a variable, but the idea is similar. Scheme does not have
a standard curry function, but it is easy enough to express currying by using
nested lambda expressions. In Haskell, functions are curried automatically if
you invoke them with a partial parameter list, which is confusing to beginners
but immensely useful.

Again, x-dim is the curried parameter. Inside this lambda expression is a
reference to x-dim. Scheme supports lexical closure; at the time this lambda
expression is evaluated, the result is a function object that “closes over” or
“captures” — that is, retains a reference to — the variable binding in effect when
the lambda expression is evaluated.

This is the variable binding owned by the caller, the variable bound to the name
board-x-dim in the calling function. It is not a copy: if some other piece of
code updated the value in that variable, this function would see a different value
for x-dim the next time it executes. This creates complex state with multiple
possible “listeners.” This is one of the reasons that Scheme programmers tend
to prefer a functional style where variables are not altered after their initial
binding.

If you are a C programmer, you may find this very confusing. You can think of it
as if the returned function retains a pointer to the x-dim sent by the caller. The
C runtime model is quite different, though: it has distinct lifetimes for variables.
Local non-static (“automatic”) variables that exist on the stack may be recycled
when a given function returns, so it is unsafe to retain pointers to them (in fact,
retaining a pointer to an automatic variable is a common beginner’s bug in C).
But in Scheme, bindings exist as long as there are references to them; when
there are no more references to them, they may be garbage-collected (or not).

Let’s look at the definition of the next function we call, array2D-map-row-elts:

3

(define array2D-map-row-elts
(lambda (array2D y-idx x-dim elt-handler)
(array2D-map-subrow-elts
array2D 0 (- x-dim 1) y-idx x-dim elt-handler)))

In this function, we call yet another function: array2D-map-subrow-elts,
which is more general (it will map any contiguous subset of the array elements).
It is the general case, and array2D-map-row-elts is the more specific case (it
maps the whole row), which means we can quite naturally define this specific
case by parameterizing the general case. It isn’t quite the same as currying, but
it is a similar idea; we provide some fixed parameters representing the start of
the row (index 0) and end (index x-dim - 1). Here is the general function:

(define array2D-map-subrow-elts
(lambda (array2D x-first-idx x-last-idx y-idx x-dim elt-handler)
(array2D-map-subrow-coords x-first-idx x-last-idx y-idx x-dim

(lambda (x-idx y-idx)
(elt-handler (array2D-get array2D x-idx y-idx x-dim))))))

Are we there yet?

This function receives all the parameters and walks through the array, starting
with an arbitrary x-idx (in this case, zero), and proceeding until we have
processed the last legal x index (in this case, x-idx - 1).

Note that instead of iteration to walk the array, I use recursion. I won’t go
into a full explanation of recursion here; suffice it to say that although many
people feel that recursion is unnatural and does not reflect how they think about
iteration in the “real world,” after expressing algorithms recursively for a while,
it starts to seem much more natural, and the proposition that recursion and
iteration can be transformed into each other does not seem so strange.

This function is formulated using tail recursion, where the bindings are not
referenced after the recursive function call. In C or Pascal, the compilers are
generally not smart about this sort of thing, and recursing on a large array could
result in a very deep set of stack frames. A language like Scheme is able to
recognize that since the values that exist in previous function calls are not used,
it is free to lose track of the previous values, so no deep stack is actually required.
Since this is the case, the decision to use recursion was largely arbitrary. I chose
it because I wanted to practice writing recursive functions.

The letrec may be unfamiliar. If the innermost function was not recursive, we
could just call it like this, without ever binding the function to a name at all:

((lambda (x-idx y-idx)
...)

0 y-idx)

In this case the innermost function is never bound to a name, because nothing
has to refer to it by name. The expression around it would simply call it. This

4

is also known as applying parameters to the anonymous function object.

You might think that we could just do this with let. The semantics of let allow
the call from outside the function, but the binding to the name iter-x would
exist only within the body of the let expression. This body consists of the
expression or expressions that occur after the binding list in the let expression.
Since the definition of the function occurs as part of the binding list, not part of
the body of the let expression, let will not work; letrec is designed specifically
to allow definition of recursive or mutually recursive functions within the binding
list.

So now are we there yet?

Almost. My final comment on this function concerns the use of the elt-handler
parameter. The generated function allows the caller to pass in a handler function.
Applying functions to functions is known as higher-order programming; support
for higher-order programming is one of the essential features of Lisp and Scheme.

It might seem like this is much too complicated. Functions generating functions
calling functions calling functions? Well, yes, this is a bit of overkill to access
an array; normally we would use some standard functions for handling data
structures. But the general style — creating a lot of small functions — appears
very commonly in Scheme programs, and now you have had a taste of how a
typical data structure library might be implemented.

I don’t claim to be very experienced with Scheme yet, but I am happy to
have gotten to the point where writing functions like array2D-make-row-elt-
mapper and its supporting functions comes rapidly and naturally. Reading
examples helps, but the lessons don’t really click until you tackle a programming
problem, and feel your mind begin to undergo rewiring. The level of abstraction,
and thus the leverage you can gain from Scheme, become much higher than this,
so stay tuned.

Day 3
OK, so I’ve given you a small view of one part of the array2D library and how it
is implemented. Now let’s look at my Sudoku solver from the top. Note that
this is a hobby project, done in the rare scraps of free time I am able to piece
together these days, by a relative novice in Scheme. In other words, it is not
finished, polished, textbook work, so be kind.

Let’s review what Sudoku is and consider some of the most elementary solving
strategies. First, terminology. These are the terms I use; some are borrowed and
some are my own. Other Sudoku geeks may use alternate terminology.

Box: the smallest unit; a single space for a number. I identify boxes using
zero-based x, y coordinate pairs.

Open box: a box that does not have a number in it yet.

5

Coordinates: on a 9x9 grid, which does not represent the only possibility in
Sudoku, the top row goes from (0, 0) to (8, 0) and the rightmost colum goes
from (8, 0) to (8, 8).

Given: one of the numbers already provided in the puzzle.

Grid: in a 9x9 Sudoku puzzle, one of the 9 3x3 sub-parts; on a 16x16 puzzle, one
of the 16 4x4 sub-parts, etc. Grids are not necessarily square; some published
puzzles could contain 4x3 grids, for example.

Virtual row: a single group that must contain the set of possible numbers (in
a 9x9 puzzle, 1 through 9). Note that each box is actually part of three virtual
rows: its row, column, and grid.

Number set: for a 9x9 puzzle, the integers 1 through 9. I have seen Sudoku
boards that allow the numbers 1 through 12, 1 through 16, 1 through 25, and 1
through 49. Sometimes letters are used: for example, the numbers 1 through 16
can be encoded using the hexadecimal digits 0..F (or 1..G), and the numbers 1
through 25 can be encoded by the letters A..Y. There are more exotic Sudoku
involving the letters that make a specific word, but this is really just an encoding
issue and does not fundamentally change the rules.

Sudoku rule: there is probably a good formal expression of this, but informally
speaking, the Sudoku rule says that each box in each virtual row must contain
one of the numbers in the number set.

By implication, each box cannot contain a number that is not a member of the
number set; it also cannot contain a duplicate of another number in the same
virtual row; in a completed puzzle each virtual row must be filled, which means
the whole puzzle must be filled.

If you find that a puzzle you are working on seems to break this rule, either
the puzzle was not valid to begin with, or you have made a solving error. The
second case is more likely, but I have found errors in published puzzles.

There are several possible types of errors. The givens may violate the Sudoku
rule, which will lead to an insoluble puzzle, or more than one solution may be
possible, which could lead you to find a solution that follows the Sudoku rule
but which does not match the published solution.

Candidate: one of the possible values that could legally be written in a box.

On an empty 9x9 grid, each box has as its candidates all the numbers 1 through
9, so no progress can be made towards a solution.

When the givens are taken into account, the set of candidates in the remaining
open boxes in the neighborhood must be reduced to maintain the Sudoku rule.
As the puzzle is filled in, the candidates are reduced further.

As you perform logical deductions on the board, you will remove candidates;
when only one candidate remains for a box, the number should be written down
and the candidates for boxes elsewhere in the neighborhood must have that

6

number removed; repeat until no open boxes remain. (This is actually in a
nutshell the algorithm for solving any Sudoku puzzle, and translates directly
into the main loop of a computer solution that uses human solving techniques
rather than testing every possibile chain of possibilities).

Non-candidate: instead of writing down candidates as you work on the puzzle,
you could also write down non-candidates: that is, numbers that have been ruled
out for each box. When the set of non-candidates for a given box leaves only
one remaining candidate in the number set, you can write down that possibility,
and you must then add this number this to the sets of non-candidates elsewhere
in the neighborhood. You could represent non-candidates by writing them down
directly, although this can be confusing, or writing down the number set in each
open box and crossing out numbers as they become non-candidates.

Single Candidate: the case when one candidate remains in a box; once you
recognize this case, you should write in the number; the box is solved, you should
then make sure to reduce the candidates in the neighborhood. Which brings us
to another term.

Neighborhood: the combined row, column, and grid that contains a given open
box. Neighborhood is a distinct concept from virtual row because if a number
appears anywhere in the neighborhood containing a given box, it cannot be a
valid candidate for the box; this is because the Sudoku rule applies to each box
three ways.

Basic Solving Strategies

For demonstration purposes, we will use the following 9x9 puzzle (taken from
Sudoku: Easy to Hard Presented by Will Shortz Volume 3):

9 . 8	3 . .	7 4 2
. 4 .	5 8 .	. 9 .
2 . .	. 7 .	1 . 8

. . 6	2 9 4	8 3 .
4 8 1
3 7 .	6 . 8	. 2 .

. 3 .	. 5 6	. . .
6 . .	1 . .	. 8 3
. 2 .	. . 3	. 1 5

Let’s look at how we might represent this board in Scheme, and then start
coming up with functions to operate on it.

To allow my solver to be configured for different board sizes and grid dimensions,
we’ll provide bindings for the independent dimension values:

7

(define max-box-value 9)
(define board-x-dim 9)
(define board-y-dim 9)
(define grid-x-dim 3)
(define grid-y-dim 3)

To start solving our sample puzzle, let’s use the following algorithm:

First, make a given board. A given board is a board array that contains only the
givens. Here are the givens, as a list of list, where each list contains a coordinate
pair as a list and a value:

(define given-list
'(((4 0) 6) ((5 0) 5) ((7 0) 9) ((8 0) 1)
((6 1) 5)
((0 2) 4) ((1 2) 5) ((2 2) 9) ((3 2) 1) ((7 2) 7)
((4 3) 9) ((7 3) 3)
((2 4) 1) ((3 4) 8) ((5 4) 6) ((6 4) 7)
((1 5) 7) ((4 5) 4)
((1 6) 9) ((5 6) 4) ((6 6) 6) ((7 6) 2) ((8 6) 5)
((2 7) 4)
((0 8) 8) ((1 8) 2) ((3 8) 7) ((4 8) 5)))

Here’s a function which will make a given board:

(define make-given-board
(lambda (given-list)
(let ((given-board

(make-vector (* board-x-dim board-y-dim) #f))
(setter! (array2D-make-setter board-x-dim)))

(letrec ((do-write-givens
(lambda (puzzle-array givens)
(if (not (null? givens))

(begin
(do-write-givens
puzzle-array (cdr givens))
(setter! puzzle-array

(caaar givens)
(cadaar givens)
(cadar givens)))))))

(do-write-givens given-board given-list))
given-board)))

This is a pretty simple function, but let’s look at a couple of points. First,
the default value of our vector is #f, the canonical “false” value. This has no
real purpose other than allowing us to use the elements of this array act as an
argument to Scheme’s if or cond and give the expected results. We’ve already
seen how to use letrec to create a self-recursive helper function; we already
know how the curried setter! function works. The body of this function is a

8

pretty straightforward example of recursion over a list. The arguments we pass
to setter! are a little more interesting:

(setter! puzzle-array
(caaar givens)
(cadaar givens)
(cadar givens))

These primitives provide shortcuts for expressing combinations of car and cdr,
and are read inside out from right to left; caaar becomes (car (car (car …))),
cadaar becomes (car (cdr (car (car …)))).

An aside: I have a love-hate relationship with these constructions. On the one
hand, they allow you to do quick deconstruction of arbitrary list structures, and
that’s a good thing because lists are very quick and dirty and you can easily
put together data structures using lists. On the other hand, they allow you
to do quick deconstruction of arbitrary list structures, and that’s bad because
they are not self-documenting in any way and nothing in them is named. Using
something like a property list or record type is probably a better idea, so I will
consider that later; Common Lisp provides destructuring, which would also be a
valid option because it is self-documenting.

Anyway, that will build a given board. Now let’s build a candidate board. The
initial candidate list can be easily generated using another function:

(define make-initial-cand-list
(lambda ()
((lambda (max)

(letrec ((make-cand-list
(lambda (count)
(if (> count max) (list)

(cons count
(make-cand-list (+ count 1)))))))

(make-cand-list 1)))
max-box-value)))

I’m going to wrap this up in the form of a value generator. A value generator is
a function that receives x and y indices and returns a new value for the board.
In this case our value generator will ignore the parameters:

(define initial-cand-value-generator
(lambda (x-idx y-idx)
(make-initial-cand-list)))

Now we can use our set-board-elts primitive, which is a curried array-mapping
function, to fill in the candidates. Each box gets a list containing the full set of
candidates:

(define make-initial-cand-board
(lambda ()

9

(let ((cand-board
(make-vector (* board-x-dim board-y-dim) '())))

(set-board-elts
cand-board initial-cand-value-generator)
cand-board)))

Now we’ve got our given board and our candidate board, and we can start
smashing them together to shake out candidates, and begin finding values to go
in our boxes. More on that next time.

Day 4
Last time, I wrote:

Now we’ve got our given board and our candidate board, and we
can start smashing them together to shake out candidates, and begin
finding values to go in our boxes.

So let’s do that. But first, I need to confess something. You may have found
yourself wondering “You already have a data structure that contains the givens
and their coordinates. Why make the given-board vector at all?” If you
wondered that, congratulations. You’re paying attention, possibly more than I
am, and working towards writing code that is simple.

So what’s the answer? The answer is “I don’t have a good reason; the code
just grew that way, and has not been optimally cleaned up yet.” As I write
this code, I’m learning to use Scheme more effectively. It has been an iterative
process. Right now I’m in the part of the cycle that is excited to have the code
successfully working on the first part of the Sudoku board solution. At some
point I’ll probably be in the part of the cycle that wants to rip up the code and
make it smaller and simpler. Scheme lends itself well to stepwise refinement.
This is both a blessing and a curse. A blessing, because it is easy to rewrite your
code. In C++, assuming your design is not visibly horrible and doesn’t crash, it
is generally too painful to redo all those interfaces and class definitions and so
working code often doesn’t get improved unless there is a burning need. Scheme,
especially if it is written in an appropriate functional style, is easy to improve
locally. This also means that you can always improve it some more, and fall into
the trap of improving it endlessly without solving an actual problem. That’s the
curse.

OK, now let’s get to the meaty part, keeping in mind that this is code in
progress. Here’s how we map the givens and use them to cancel the first round
of candidates. From the top:

(cancel-givens
(make-given-board given-list)
(make-initial-cand-board))

10

Simple enough so far, right? Now we just have to define cancel-givens, and
we’re done.

(define cancel-givens
(lambda (given-board cand-board)
(map-board-coords-elts
given-board
(lambda (x-idx y-idx elt)
(if elt

(cancel-given cand-board x-idx y-idx elt))))
cand-board))

We know roughly what that map function is going to look like; it will call a
function with the coordinates and elements of the given board. Now we just
need to define cancel-given, and we’re done. here’s cancel-given. This one is
big (most likely it could and should be further simplified):

(define cancel-given
(lambda (cand-board x-idx y-idx given)
(reduce-cand-list-to-given!
cand-board x-idx y-idx given)
(letrec ((filtered-neighborhood-unique-coords-list

(make-filtered-coord-list
(get-unique-neighborhood-coords
x-idx y-idx) (list x-idx y-idx)))

(cand-remover
(make-cand-remover given))

(coords-list-handler
(lambda (coords-list)
(if (not (null? coords-list))

(begin
(cand-remover
cand-board
(caar coords-list)
(cadar coords-list))
(coords-list-handler
(cdr coords-list)))))))

(coords-list-handler
filtered-neighborhood-unique-coords-list))

cand-board))

Let’s look at this one in a little more detail. Remember that this is called with
each given. The first thing we do is turn the candidate list in the box with the
given to a list containing only the given. Maybe that isn’t the best representation,
but it will do for now:

(define reduce-cand-list-to-given!
(lambda (cand-board x-idx y-idx given)

11

(set-board-elt!
cand-board
x-idx y-idx
(list given))))

Note that this is not strictly functional in style. I have tried to move over to
a functional style, but my roots are still in imperative programming, so a fully
functional, referentially-transparent implementation does not come naturally
quite yet. In general, I am at a bit of a loss for good idioms to handle the
gamut of solving strategies on the board over time without introducing mutation,
but that is probably from lack of experience in purely functional programming
techniques and data structures. I could keep regenerating the whole board, but
that seems strange to me. I may explore a stricter functional design in a future
version.

Meanwile, let’s continue on and look at the next task, which is to remove the
given from the entire neighborhood. Recall that the neighborhood of a box is
the combined row, column and grid. We want a list of coordinates. Simply
combining the coordinates for the row, column and grid will generate duplicate
sets of coordinates; we also don’t want to process the box itself, or we’ll remove
the given we just set. So we first use get-unique-neighborhood-coords:

(define get-unique-neighborhood-coords
(lambda (x-idx y-idx)
(let ((grid-bounds (map-coords-to-grid-bounds x-idx y-idx))

(acc (make-unique-coords-accumulator)))
(map-board-row-coords y-idx (car acc))
(map-board-col-coords x-idx (car acc))
(map-board-subarray-coords
(car grid-bounds)
(cadr grid-bounds)
(caddr grid-bounds)
(cadddr grid-bounds)
(car acc))
((cadr acc)))))

The function map-coords-to-grid-bounds uses a little bit of Scheme math to
determine the bounds of the 3x3 grid our box is in. Here’s how I do that:

(define map-coords-to-grid-bounds
(lambda (x-idx y-idx)
(list (get-grid-lower-bound x-idx grid-x-dim)

(get-grid-upper-bound x-idx grid-x-dim)
(get-grid-lower-bound y-idx grid-y-dim)
(get-grid-upper-bound y-idx grid-y-dim))))

And here are the helper functions:

(define get-grid-lower-bound

12

(lambda (idx dim)
(* dim (floor (/ idx dim)))))

(define get-grid-upper-bound
(lambda (idx dim)
(- (* dim (ceiling (/ (+ 1 idx) dim))) 1)))

The particulars of Scheme math require some care if you want to make sure you
get a whole number result rounded in the direction that you want. If you’re
used to using languages that don’t do exact fractions, this may seem like too
much work. This way seems to work, though, so we will move on for now.

Next, we use an accumulator (created by make-unique-coord-accumulator)
to collect up all the coordinates. This isn’t a numeric accumulator, but a list
accumulator: when we create it, it holds a reference to an empty list, and as we
call it with coordinates, the list is assembled. Our accumulator generator looks
like this:

(define make-unique-coord-accumulator
(lambda ()
(let ((coords (list)))
(list
(lambda (x-idx y-idx)
(if (not (member (list x-idx y-idx) coords))

(set! coords
(cons (list x-idx y-idx) coords))))

(lambda ()
coords)))))

This is again not strictly functional; in a more functional style, we’d probably
generate a new accumulator with a new list created from the previous one. But
then the client that held the accumulator would have to mutate its binding in
order to get the new accumulator, so it would have to be strictly functional as
well – a sort of viral strict functionality would require rewriting all the upstream
code. Something to think about!

This is yet another function generator, with a twist. We use a let to create
a binding for a list, called coords. This is the list that will accumulate the
coordinates. The actual return value of the function is… another list! This time,
a list of two functions. The first function in the list receives coordinates and if
the coordinate pair is not already present in the closed-over list, as determined by
member, we destructively set coordinates to be the list with the new coordinate
pair prepended. The second function in the list doesn’t look like a function at
all; in fact, it consists only of:

(lambda ()
coords)

All that does is return the value held in the binding named coords. It’s the

13

rough equivalent of a return statement in C, C++, or Java. The important thing
to note here is that both of the functions in the list we return contain a reference
to coordinates. The binding in question is the one that is in lexical scope when
the lambda form is executed. Note that we could stuff these functions inside
some other data structure; we could even put them in a single cons cell using
set-car! and set-cdr! But for now I am still using the list as my “Swiss Army
Knife” data structure, so we’ll use that.

Returning to the innards of get-unique-neighborhood-coords let’s look at
what happens next:

(map-board-row-coords y-idx (car acc))
(map-board-col-coords x-idx (car acc))
(map-board-subarray-coords
(car grid-bounds)
(cadr grid-bounds)
(caddr grid-bounds)
(cadddr grid-bounds)
(car acc))

I’m applying my accumulator to the row, the column, and the subarray. The
map functions are unexceptional; they are wrappers around my 2D array imple-
mentation. To pass the four parameters that constitute the bounding rectangle of
the subarray, I’m again using those all-purpose list functions car, cadr, caddr,
and cadddr. These simply correspond to retrieving the first, second, third, and
fourth element in a list.

The last expression in the function is the return value. Don’t overlook its
importance:

(cadr acc)

This actually calls the function contained in the second element of our accumu-
lator list, which will retrieve the contents of the accumulator. Since it is the last
expression in the function, get-unique-neighborhood-coords will return its
value.

Now we’re back in cancel-given. The next thing we do is call make-filtered-
coord-list on our unique list. We do this to remove the box containing our given,
so that we don’t wind up removing that candidate as well:

(define make-filtered-coord-list
(lambda (coords-list coords-pair)
(if (null? coords-list) (list)

(if (not (equal? coords-pair (car coords-list)))
(cons (car coords-list)

(make-filtered-coord-list
(cdr coords-list) coords-pair))

(make-filtered-coord-list
(cdr coords-list) coords-pair)))))

14

This function is a textbook case of filtering out one member from a list, returning
a new list. The key implementation detail here is that it recursively walks the
list, building up a new list as it goes. As it stops to examine each element in
the list, if it is not the equal to the item in question, it goes ahead and conses it
on to the generated list; if it is, the element is not consed, and we just continue
to recurse. You can see similar examples in The Little Schemer. Note that this
function counts on the fact that equal? works properly on data structures that
are not atoms and on atoms that are different objects in memory. In Scheme,
Lisp, and other dynamic languages – basically, as soon as you get away from
“unboxed” primitive data types – equality is a complex subject!

OK, are you still with me? We’ve got a list of the coordinates for the neighborhood
we’re examining. Next, we make a candidate remover, which is another function
generator; when you pass it a candidate, it removes it from all the candidate list.
That should be straightforward enough by now, so I won’t belabor it. So, does
it work?

Well, of course, it did not work on the first try. Or the second or third try! In
fact, while I have presented this design top-down, I actually wrote it using a
much more realistic mixture of top-down and bottom-up design. Sometimes the
higher-order algorithm will be clear. This is often best worked out on paper.
The cancel-givens and cancel-given function started out as a stub that called
stubs. To test the implementation function-by-function, the stubs just returned
fixed values. These were later fleshed out with real code. As I implemented more
functions, I found that certain other function definitions seemed to naturally
fall out, so wrote those next. Meanwhile, had already gone “bottom up” in
the process of writing my 2D array functions, so my implementation hooked
up in the middle. Then there was a bit of “impedance mismatch,” where the
functions I thought I would need turned out not to be precisely the functions I did
need. I wound up iterating in both the “bottom up” and “top down” directions
multiple times before getting even to this point. But using the DrScheme listener,
turnaround on this kind of iteration is very quick.

The result of removing all the givens from the board, and crossing off candidates
in the neighborhood of each given as I go, is a cand-board vector that looks
like the one below. A list of only one value indicates that the value has been
solved. I have marked the initial set of givens with square brackets instead of
parentheses:

((2 3 7) (3 8) (2 3 7 8) (2 3 4) [6] [5] (2 3 4 8) [9] [1]
(1 2 3 6 7) (1 3 6 8) (2 3 6 7 8) (2 3 4 9) (2 3 7 8)
(2 3 7 8 9) [5] (4 6 8) (2 3 4 6 8)
[4] [5] [9] [1] (2 3 8) (2 3 8) (2 3 8) [7] (2 3 6 8)
(2 5 6) (4 6 8) (2 5 6 8) (2 5) [9] (1 2 7) (1 2 4 8)
[3] (2 4 6 8)
(2 3 5 9) (3 4) [1] [8] (2 3) [6] [7] (4 5) (2 4 9)
(2 3 5 6 9) [7] (2 3 5 6 8) (2 3 5) [4] (1 2 3) (1 2 8 9)
(1 5 6 8) (2 6 8 9)

15

(1 3 7) [9] (3 7) (3) (1 3 8) [4] [6] [2] [5]
(1 3 5 6 7) (1 3 6) [4] (2 3 6 9) (1 2 3 8) (1 2 3 8 9)
(1 3 8 9) (1 8) (3 7 8 9)
[8] [2] (3 6) [7] [5] (1 3 9) (1 3 4 9) (1 4) (3 4 9))

Note that there were 28 givens. The next important question to ask is “did we
find any more solved boxes?” That is, did we reduce the candidate list in any of
the non-given boxes to a length of 1, indicating only a single possibility in that
box?

If you look closely, you will notice that, in fact, we have solved some boxes, simply
by crossing out the givens and following through on the implications of those
givens for the boxes in the neighborhood of each given. In the third-from-last
row, which would be row 6 in our zero-based indexing, we see that there is a
single 3 candidate in one of the candidate lists. This was not a given:

(1 3 7) [9] (3 7) (3) (1 3 8) [4] [6] [2] [5]

However, our code did not yet discover that we have made more progress. In the
next installment, we’ll look at how the code can make that discovery, and what
the implications are. We’ll also look how to apply some slightly less elementary
solving rules to the board.

Day 5
Just a brief post today. I have been too busy to do much on my Sudoku solving
program itself, but I did spend some time polishing up my array2D library. With
revision this library has finally assumed what I feel is its “natural” shape. The
optimal design was not clear at the outset, but with some use I feel I’ve discerned
the implementation that minimizes the amount of redundant code and thus the
number of places that possible errors may be hiding. I’m sure it could be even
more concise; I have a feeling that a little macro magic could cut the lines of code
in half, but the shape of that implementation has not yet become clear to me,
and I have an allergy to using techniques that don’t provide a clear advantage.

It is really quite a simple library, but in order to provide some assurance of
correctness, I also wrote a series of PLT Scheme test cases. I have not figured
out how to use DrScheme to tell me if this test suite covers all of the code, or if
this is even possible, but it is at least nearly complete.

The library does not do meaningful error-checking. Scheme textbook code rarely
does anything by way of error-checking. As a result I’m deficient on strategies I
could use to address this, especially when trying to stick to R5RS Scheme.

It isn’t possible to code around every conceivable error. For some applications,
it makes sense to perform verification any time data is read from or written to
memory. We can’t operate at that level. We also shouldn’t put in effort to detect
flaws in the implementation itself. Given our partially functional approach, in
which we don’t update any top-level definitions, there aren’t a lot of unexpected

16

states our library can get into. We should focus our attention on the response
to incorrect inputs. There are only a couple of classes of errors that the library
should expect:

1. The set of array boundary errors. Because coordinate pairs are mapped
to a single index on a vector, many of possible boundary errors will result
in an incorrect cell being set or get. Only cell references that exceed the
internal representation will generate a meaningful run-time error, and this
error will not tell us if the x or y index was out of bounds.

2. The set of errors that can arise from receiving an incorrect value-generator
or mapping function. In Scheme, a function signature really consists only
of the name and the number of parameters, and does not include type
information about the parameters. Supplying an incorrect number of
parameters will be caught with a meaningful error at run-time but because
the passed functions may be called via several levels of indirection, and
the function may not be bound to a named variable, it may be difficult to
glean from the error message just what has gone wrong. (Another way to
say this is that DrScheme has thrown away too much context information).

Type errors are potentially more insidious, but in my implementation these
functions will tend to receive an array (vector), integer indices, and possibly
another function. The result of doing a vector access on an integer or function,
or treating a vector or function like an integer, should at least fail fast with a
moderately meaningful error.

There are richer language constructs that could address these problems. For ex-
ample, either Common Lisp or Dylan would allow me to specify type information
for the parameters. The runtime is then capable of flagging type errors as soon
as they happen, or better yet, verify type safety across functions and generate
code that operates on POD (plain old data). Dylan also supports limited types,
although implementation support in Gwydion’s d2c is spotty. Limited types
would allow range checking further upstream. Of course, if I wrote this program
in Common Lisp or Dylan, I would not bother simulating an array. If our
language supported exception handling, I could wrap the top-level operations to
catch exceptions without too much modification inside all my functions.

Another approach to bounds-checking in my 2-D array would be to encapsu-
late the array data together with metadata on its x and y dimensions. I am
doing this to a limited extent with the closure generation, but the captured
x-dimension is not used to validate that the x-index is within bounds. Other
array implementations use a record or a closure to wrap up the representation
itself. But then it is more difficult to display the contents of the array, and if
we are going to start down that road, we might as well try to generalize our
library for an n-dimensional array. That seems like overkill, so for now we will
call array2D complete as it is.

17

The Code (Updated March 2025)
Looking at the old source code, it is clear that this is a snapshot of my work
in progress. Not every function seems to be used. Some of them I likely wrote
“on spec,” thinking about what the higher-level code might require. That’s a
good way to experiment and learn, which is all I really wanted from this effort.
I had not gotten to the point where I finished the higher-level code that used
this scaffolding to implement a variety of Sudoku-solving strategies.

So, the code is mostly scaffolding to support a top floor that I didn’t complete.
Many functions lack comments, and some have only minimalist comments. Ideally
there would be a third stage, too, after completing the top-level code: a “now
that it works, refactor everything to be as simple and clear as possible” stage.

Because of its obvious work-in-progress status, I have not put this code on
GitHub, but I have made the files available for anyone who wants to peruse
them, study the functions, laugh at my Scheme programming skills (clearly a
work in progress), or whatever. Knock yourself out.

I used the latest version of DrRacket, formerly PLT Scheme, to run these files.
I set the environment to use R5RS mode, supporting the fifth version of the
Scheme language as described in the specification document here.

The first two files are not intended to be run by themselves, but contain support
functions:

array2d.scm

array2d-board-support.scm

The “top level” code is in sudoku-vec.scm. It builds a Sudoku board and
applies an initial “cancel givens” strategy to solve it, but the resulting board is
not fully solved.

sudoku-vec.scm

There is a fourth file, an unfinished test suite. It looks like I was using this code
to debug the support functions:

sudoku-vec-tests.scm

It did not run correctly, which leads me to believe that I had changed the support
functions without changing the tests, or wrote the tests without ever finishing
the process of running and testing the tests.

Fortunately, although my Scheme is rusty, I recall enough to be able to patch
up the tests and get them to run. In the process I found and fixed a few obvious
bugs in the support functions.

So, thank you, past me: you did not finish this Sudoku solver, but at least you
left me some bread crumbs pointing to things that needed to be tested and fixed.

18

https://conservatory.scheme.org/schemers/Documents/Standards/R5RS/r5rs.pdf
./scheme/array2d.scm
./scheme/array2d-board-support.scm
./scheme/sudoku-vec.scm
./scheme/sudoku-vec-tests.scm

The unfinished test file appears to run correctly now, but of course this is no
guarantee that all the code is bug-free. Use it for any purpose at your own risk!

In a perfect world, at least as I define it, I’d have enough free time to one
day come back to, and finish, all my unfinished programming projects. In the
imperfect world we actually have, though, I need to devote most of my attention
to work that I can get paid for. Don’t get me wrong — I often enjoy my paid
work quite a bit, especially when I can learn new things, but it is not always
what I would choose to do for my own learning and enjoyment.

Maybe if I can ever retire, I’ll be able to pass this way again and play with
Scheme some more. But in case I never do — I leave that work to you.

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

19

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Day 1
	Day 2
	Day 3
	Basic Solving Strategies

	Day 4
	Day 5
	The Code (Updated March 2025)

