The Polar Game in Haskell: An Accidental Online
Chautauqua

Paul R. Potts

June-July 2013 and February 2025

In the summer of 2013, while looking for my next job, I wrote a series of blog
posts describing my experiments in Objective-C, Scala, Dylan, and Haskell. T
boiled those posts about Dylan down into a straightforward discussion of my
finished design and code. The posts about Haskell, though, show me learning as
I went along.

Initially I was working mostly from books, but then a wonderful thing happened
— a number of different Blogger readers found the blog posts and started leaving
comments, including detailed suggestions and code snippets. I’d riff off these
suggestions in my next installment, and use the suggestions as best I could, and
then the commenters came back with further suggestions based on their own
experiments with the code.

In other words, it became a sort of seminar, or “Chautauqua” — a shared inquiry.
I first discovered the term decades ago when I read Robert Pirsig’s book Zen and
the Art of Motorcycle Maintenance and it felt right to me, because I grew up
near the Chautauqua Institution in Yew York, and sometimes attended programs
there with my family.

So, this article is really just a cleaned-up version of all these posts, including the
comments. As such, it includes snippets of my code, as well as other people’s
code, that were rough drafts, notes from our “lab notebooks” if you will, and
which contain known bugs (and, most likely, unknown bugs as well). The code
snippets do not necessarily represent the best practices in Haskell programming
at the time the code was written, and almost certainly don’t represent the best
practices in 2025.

So, I don’t necessarily recommend using this code as an example for your Haskell
programming, but I certainly do recommend learning while in dialogue with a
community of fellow programmers, like I did; don’t be afraid of posting work-
in-progress in a public forum; it demonstrates your bravery and your ability to
learn. That’s the experience I wanted to capture in this article.

Many thanks to Blogger readers Twan van Laarhoven, Jeff Liquia, BMeph,
Roland, Matt Walton, and others who left comments and contributed code to

make this serendipitous occasion happen!

My Code

The code can be found in my GitHub repository here. Note that I have not
touched this code in a dozen years, and I don’t know if the latest GCH will even
compile and run it correctly.

Introductory Notes about Polar

Many years ago there existed on old-school MacOS a small game called “Polar.”
It was a very simple game, written by a guy (Go Endo) who was probably a
student at the time, but I was fond of it — fond enough to save it for 23 years,
with the intention of studying its design and re-implementing it in the future.
(’'m a bit of a digital pack-rat, and have saved a lot of old bits and bobs like
this.) Years ago, I made notes of how to beat the first 3 levels (it was one of
those “incredibly simple but maddeningly difficult” games), drew out the levels,
made notes on how the objects behaved, etc. I haven’t been able to run that
game for a long time, but today I just got it working under the MacOS emulator
SheepShaver. Here’s what level 1 looks like (blown up a bit):

Figure 1: “Polar Level 17

The penguin is your avatar. The rest of the objects are ice blocks, trees, hearts,
bombs, mountains, and houses. The world is a sheet of ice. You can walk around
on the ice. Some objects (trees, mountains, and houses) can’t be moved, while
bombs, hearts, and ice blocks move without friction — if you push them, they
will keep going until they hit the edge of the world or another object. Trees
don’t block the movements of the penguin avatar — it can walk over them as if
they were just painted on the ground — but trees will block the movement of
other objects. If you slide an ice block, and, while sliding, it hits another object,
it will stop sliding. If you push an ice block directly against another object, the
ice block is crushed, and disappears. If you slide a bomb towards a mountain, it
will blow up the mountain — both the bomb and the mountain will disappear.
Any other object will stop a sliding bomb and it won’t blow up.

The goal of the game is to slide all the hearts on the board into the house. Cute,
huh? But because the ice is frictionless to everything except the penguin avatar,
it’s incredibly easy to get objects stuck against walls or corners where you can no

https://github.com/paulrpotts/arctic-slide-haskell
https://sheepshaver.cebix.net/

longer move them the way you need to, because there are no longer open spaces
available for you to get the penguin avatar into, and to slide the objects onto
(remember, you can’t pull anything, only push things by walking into them). So,
you have to carefully plan out your moves. If you get stuck, there’s an option to
start the level over. You might wind up having to use that option a lot.

I should mention that the original game had a copyright notice (1990), and was
shareware ($2.00). I can’t remember if I ever sent the author $2.00. I'm not sure
how he would feel about me taking apart and trying to re-implement his game,
or whether he’d try to assert that copyright prevented me from doing so, but I'll
assume he’s a nice guy and wouldn’t care as long as I don’t charge for it, and go
ahead, on the theory that easier to ask forgiveness than permission. I was not
able to find him online — maybe “Go Endo” was a pseudonym?

Day 1

So if you’ve been following recent posts, you know I’ve been messing with the
logic for a simple sliding-tile game. In my last post I took some designs refined
via a side trip into Dylan and brought them back into Objective-C, making them
a little more idiomatic by pruning my tile classes that didn’t hold their weight,
and compensating for Objective-C’s very limited method dispatch options.

But in addition to learning Objective-C, and Apple’s APIs for writing an app, I'm
also trying to further my knowledge of Haskell, which is somewhere just beyond
“utter newbie.” So I'm going to try to implement the game logic in Haskell, too.
Since the game is decidedly stateful, there is a certain impedance mismatch here,
at least with respect to the early chapters in most of the tutorials and guides.
But I'm told that Haskell also makes a great imperative programming language,
so let’s give it a shot. And along the way I can try to mold my understanding of
stateful versus imperative a little more.

For day one, which was a shorter-than-usual day, I did not get into the state
monad or how to model mutation of a 2-D array yet. I wanted to consider whether
I could model the tile classes the way I could in Dylan, and do something useful
in them. It occurred to me that each move of the penguin, and all the subsequent
actions including possibly pushing an object, possibly a collision, possibly an
object sliding frictionlessly as long as it can and then another collision, actually
takes place in a 1-dimensional vector, not a 2-dimensional array. So it might be
interesting to handle a penguin move by extracting a vector (in the form of a
list) from the array, and replacing it with an updated list.

I haven’t worked that all out yet but here is the bare beginning of my experi-
mentation. There’s a way to represent tiles:

data Tile = Empty | Tree | Mountain | House | Ice_Block |
Bomb | Heart | Edge
deriving (Show)

Part of the confusion of learning Haskell is that, semantically, this isn’t quite the

equivalent of a set of enumerations, or of a set of class declarations. From what
I can tell, this is more like a list of singleton factories — constructors, where
I've also derived them from Show, sort of the equivalent of mixing in a base
class. But this is all an approximation, and Haskell is quite different than the
other languages I'm most familiar with.

My next thought was that I wanted to be able to declare “base classes” so that,
for example, I could have a Walkable class that comprised Empty and Tree.
In Dylan I would do this by using classes, but there is different way: declaring
a type-union of singletons. I think that this Haskell solution is more like the
type-union. I looked in vain for an explicit type union. Instead I found class
(which, in Haskell, does not correspond to a class in the sense that I'm used to,
of a template for a run-time object that consists of data members and methods
to operate on it, but a typeclass, something I clearly need to study more):

class Walkable a where
walkable :: a -> Bool

And then this: which boils down to, I think, a function to determine whether a
Tile is an instance of a Walkable typeclass:

instance Walkable Tile where
walkable Empty = True
walkable Tree = True
walkable _ = False

Now I can write something like this (just a vague thought-in-progress at the
moment):

slide :: [Tile] -> [Tile]

slide [] = error "slide empty list!"
slide (t) = error "single item list!"
slide (Empty:ts) = ts ++ slide ts

collide :: [Tile] -> [Tile]

collide [] = error "traverse empty list!"

collide [Edge] = [Edgel

collide (Empty:ts) = ts

collide (Bomb:Mountain:ts) = [Empty, Empty] ++ ts
collide (Heart:House:ts) = [Empty, House] ++ ts

step :: [Tile] -> Bool
step [] = error "step: empty list!"
step (t:_) = if walkable t then True else False

Then after sticking in a dummy main, I can load this into GHCI and interact
with it a little:

*Main> :t Tree
Tree :: Tile

*Main> step [Mountain, Empty, Empty, Tree, Edgel

False

*Main> step [Tree, Empty, Empty, Tree, Edgel

True

*Main> collide [Heart, Mountain]

**x* Exception: arctic-slide.hs:(22,1)-(26,47):
Non-exhaustive patterns in function collide

(Um, yeah, OK, I have work to do there...)

*Main> collide [Heart, Housel

[Empty,House]

*Main> slide [Empty, Empty, Empty, Empty, Mountain]
*xx Exception: single item list!

(Whoops...)

Anyway, that’s not exactly what I want to do — really, I want the functions
to actually return a new list of the same length, so I'll have to build it up
as I recurse down the list — maybe in the List monad? But it’s a start on
the whole basic concept of matching on the “types” of my tiles in a “vector,”
such as it is. That whole bit with Walkable — which I admit I don’t quite
understand yet — seems like far too much conditional logic when I really just
want to pattern-match on a type union of Tile. In other words, I want to write
something like this (not valid Haskell):

union Walkable = Empty | Tree
step (Walkable:_) = True

That’s a small example, but I have several other type union classes I need to use
to categorize the tiles, so I have an incentive to make that as clear and simple as
possible. It seems like I'm still fighting with Haskell’s idioms here. Clearly, as
they say, more research is needed...

Day 1 Comments

Blogger reader Twan van Laarhoven wrote:
Some tips:

slide (t) = error "single item list!"

The pattern (t) matches any list; you are looking for [t].

Instead of using if, then, else, use guards:

step :: [Tile] -> Bool
step [] = error "step: empty list!"

step (t:_) | walkable t = True
step (t:_) | otherwise = False

Or just

step (t:_) = walkable t
or even

step = walkable . head

If you really want to write this as a pattern, there are two options.
Use view patterns:

{-# LANGUAGE ViewPatterns #-}
step (walkable -> True : _) = True

or change the datatype:

data WalkableTile = Empty | Tree
data UnwalkableTile =
Mountain | House | Ice_Block | Bomb | Heart | Edge
data Tile = Walkable WalkableTile | Unwalkable UnwalkableTile

Also, your Walkable class doesn’t add much. It could just be a
standalone function walkable :: Tile -> Bool.

Finally, you should not unnecessarly raise errors. For example, why
isn’t slide [] just []?

I responded:

T v. L, thanks for much for your help. It is embarrassing being such
a beginner but I am very happy to get pointers. The books and
tutorials are frustrating because there seems to be a gap between
very simple program tailor-made for Haskell implementations, that
they cover, and slightly more complicated program, without a good
bridge between the two other than trying to read the code for much
bigger published Haskell programs.

I am interested in learning more about ViewPatterns — I have not
heard of those. Today I will be seeing if I can get the List monad
working to collect up the altered lists.

You are right about the Walkable class. There are some other
classes that have more members, but they also overlap membership.
That’s probably a very un-Haskellish way to do it since it introduces
multiple possible matches, although I know Haskell evaluates the
patterns in strict order. See the earlier Dylan code for what I mean.
In Dylan I'm relying on the runtime to check for matches in order
from less specific to more specific, and that seems to work OK, but

I don’t have a “catch everything” case deliberately — since if all
the methods don’t match, I want a run-time error, as it indicates a
design error upstream.

Blogger reader BMeph replied:

@Paul: I think the “more Haskellish” way to indicate a design error
would be to have a compile-time error, not a run-time one. Of course,
that only works when you are knowingly “doing it wrong,” but still,
there it is.

@Twan v. L: The second part of the step definition that starts step
(t:_) |... should be all blanks up to that | part.

Day 2

Another short day since I had several phone interviews. Thanks to the folks who

left comments!

I got a little further today; I feel like I'm starting to understand Haskell’s data
handling a little bit better. It’s a cliché but I think the hard part is un-learning,
and understanding what something like this doesn’t do. So here’s where it stands
now — not finished by any means, but coming along, with painful slowness as I

continue to learn:
data Dir = North | East | South | West
deriving (Show, Eq)

data Pos y x = Pos Int Int
deriving (Show, Eq)

-- N.B.: captitalization of initial letters in posY, posX is
-— semantically important!

posY (Pos y x)
posX (Pos y x)

y
X

data Tile = Empty | Tree | Mountain | House | Ice_Block |
Bomb | Heart | Edge deriving (Show, Eq)

-- Different types of tiles have different properties in
-- different interaction contexts:

-- The penguin can walk through empty tiles or trees (forest)
walkable :: Tile -> Bool

walkable t = (t == Empty) || (t == Tree)

-- But everything except empty tiles will block sliding objects
blocking :: Tile -> Bool
blocking t = (t /= Empty)

-— A subset of tiles are movable (and will slide until blocked)
movable :: Tile -> Bool

movable t = (t == Bomb) || (t == Heart) || (t == Ice_Block)

-— A subset of tiles aren't movable; note that this set

-- overlaps blocking and that Tree is both walkable and fized
fixed :: Tile -> Bool

fixed t = (t == House) [| (t == Mountain) || (t == Edge)

That all should be fairly non-controversial, I think. The predicate approach to
classifying tiles in different contexts may actually make more sense in Haskell,
given that I can then use these predicates as guards. The replacement for a
simple struct, Pos, still feels awkward — I haven’t really dug into whether it
could be improved with record syntax, or some other technique. For now it’s
there because it works.

All the beginner tutorials say “don’t use arrays, don’t use arrays, don’t use
arrays!” At least not until I reach the stage where I need to optimize the
implementation. So I'll try that. Let’s try a list, and I'll extract “slices” from it,
lists starting at a given Pos going in one of four different directions. Eventually
I want the slice function to terminate the slices with Edge tiles that aren’t
actually stored in the list. So... I have to think about this some more, but here’s
a single case, sort of taken care of:

type Board = [[Tile]]
slice :: Board -> Pos y x —-> Dir -> [Tile]
slice board pos East = drop (posX pos)
$ head $ drop (posY pos) board
slice _ _ _ = error "slice: not handled yet!"

I don’t have slide finished, but here’s a version of collide that works, at least a
little:

collide :: [Tile] -> [Tilel
collide (t:(Empty:ts)) | movable t =

[Empty] ++ collide (t:ts)
collide (Bomb:(Mountain:ts)) = [Empty, Empty] ++ ts
collide (Heart:House:ts) = [Empty, House] ++ ts
collide (_) = error "collide: unexpected case!"

The nested pattern (Bomb:(Mountain:ts)) was sort of a flash of inspiration —
but it appears that maybe both this version and the (Heart:House:ts) version
work the same — I think — so perhaps it’s kind of pointless. It seemed to go
along with the “destructure it the way you would structure it” idea, although I

would normally not build a list out of cons cells unless it was irregular in some
way.

Here’s the penguin step function, returning True if the penguin can move onto
the tile at the head of the list:

step :: [Tile] -> (Bool, [Tile])
step [] = error "step: empty list!"
step ts = if walkable (head ts) then (True, ts)
else (False, collide ts)

And there’s move, which “absorbs” the case where the penguin is turned to
face a different direction. It’s not really done; the idea is that it will give back
the board, basically generating a new world. For now we kind of punt on the
question of how to rebuild the board out of the existing board and the modified
“slice” — and so the I just return a list as the first element of the tuple. In the
first case where the penguin hasn’t moved, that doesn’t actually make sense, but
it satisfies GHC for now (wow, she’s kind of a harsh mistress, but you’ve got to
love those thigh-high black leather boots!)

move :: Board -> Pos y x -> Dir -> Dir ->
([Tilel], Pos y x, Dir, Dir)

move board pos move_dir penguin_dir =
if move_dir /= penguin_dir
then (head board, pos, move_dir, move_dir)
else (collide $ slice board (Pos 1 0) penguin_dir,
pos, penguin_dir, penguin_dir)

Boy, that’s tuple-icious... not sure I like it, but it’s a start. So:

*Main> walkable Tree

True
*Main> :t Pos
Pos :: Int -> Int -> Pos y x

*Main> let slice = [Heart, Housel

*Main> collide slice

[Empty,House]

*Main> let slice = [Bomb, Empty, Mountain]

*Main> collide slice

[Empty,House]

*Main> let board = [[Empty, Tree, Empty, Edgel,
[Bomb, Empty, Mountain, Edgell

*Main> move board (Pos 1 0) West East

([Empty,Tree,Empty,Edge] ,Pos 1 0,West,West)

*Main> move board (Pos 1 0) East East

([Empty,Empty,Empty,Edge] ,Pos 1 0,East,East)

More tomorrow if I can manage it!

Day 2 Comments
Blogger reader BMeph wrote:

I'm pretty sure that the data Pos y x = ... line doesn’t do what
you think it does. Unless you don’t mind people using Pos String
Double types in their code.

I like watching the process of a programmer getting a grip on what
Haskell can, can’t, does, and doesn’t do — please, keep it up!

I replied:

Thanks, BMeph. I am still wrestling with what data actually does.
There are lots of examples that show using it, but the only thing
I’ve seen that strictly describes what it does is the formal language
definition, and I struggle with the formal semantics a little.

Blogger reader Noah (I think it was Noah; some comments have been lost and
users deleted over the years) wrote:

I would suggest data Pos = Pos { posX :: Int, posY :: Int}
instead. This constructs the posX and posY for you automatically,
and removes the two type parameters x and y, which like BMeph
said, you don’t really want.

I replied:

Thanks, Noah. I had moved to Pos Int Int. I’d like to be rid of
having to write getters. If you have a minute, do you think you could
explain what the type parameters are for/do? Not explain like I'm
five, but like I'm more accustomed to C, Java, Dylan, or Scheme. T
was just reading this which talks about the different namespaces that
the parts of the data declaration use, but that doesn’t seem to tell
the whole story, and I'm still looking for that whole story on data.
If T can collect up enough pieces and get to the point where I feel I
really understand all the options, I am volunteering to write “data
for noobs” or some such.

I did not see a reply from Noah, but Blogger reader Ykarin-chan wrote:

T am just going to describe the default Haskell '98 syntax, GADTs and
records and empty data types change things, but aren’t important
at first. (Though in some ways the syntax for GADTs is clearer. 1
often find myself using it even when it is unnecessary.)

With a data declaration you are defining a “type constructor” on the left hand
side of the = and 1 or more “data constructors” on the right hand side. So the
simplest possible data declaration is:

data T = U

10

http://echo.rsmw.net/n00bfaq.html

Defining a constant “type constructor” T, and a constant “data
constructor.” Note that the type constructor and the data constructor
are in different namespaces, so they can, but do not have to be, the
same lexicographically.

In fact the Haskell type (), the O-tuple, is defined as:
data) = O

The next complication is that you can have multiple data constructors
for the same type:

data Bool = True | False

The | is meant to be reminiscent of “or,” since a Bool can be either
True or False.

Now the next complication is that “data constructors” can be “higher-
typed,” like your Pos example:

data Pos = Pos Int Int

This means that the data constructor Pos has type Int -> Int ->
Pos. So in order to construct an element of the type Pos (in the
type namespace), we use the Pos (in the data namespace) on two
Ints:

Pos 3 4 :: Pos

Or the type of Peano natural numbers, which are hideously inefficient but
mathematically simple.

data Peano = Zero | Succ Peano

So Zero is a constant data constructor, but Succ is a function from
Peano to Peano.

Now you can also make the type constructor a function and not a
constant, but the syntax is a little different. We put (type) variable
names after the type constructor, and the compiler figures out their
“type” (really, their “kind”) for us. For example lets look at Maybe:

data Maybe a = Nothing | Just a

This means that the Maybe type constructor is not usable as a type
by its self. Its “higher-kind-ed” in that it takes a type, and gives
you a new type. So Maybe isn’t a type, but Maybe Int is. The
compiler sees that you are using a directly as a type, and so gives
it Kind *, which means Maybe has kind * -> *. (* is just the
kind notation for the kind of a actual type, (as opposed to a type
function).

11

Now type variables, despite their name, do not actually have to have
kind *.

So if you took out the record syntax sugar, StateT’s data declaration
would be writen:
data StateT s m a = StateT (m (a, s))

where s and a have kind *, but m has kind * -> *.

Does that help at all?
I replied:

Yukarin-chan, that helps a lot! It seems to put together in one place
bits and pieces I've seen in several different places. I will study on
that for a while — it usually takes me a couple times, and then
actually using it more than once, to really understand something in
Haskell. But I'm getting there!

Blogger reader Jedai wrote:

Since you're familiar with Java, Maybe a is analog to generic types
in Java. This is in fact very common in Haskell though we call it
polymorphism.

Day 3

More phone interviews, more coding. On my laptop, amidst a gaggle of fighting
children, during a thunderstorm, with our basement flooding, with the kind
assistance of some friendly commentors, a little more progress. Let’s change
Pos:

data Pos = Pos { posY :: Int, posX :: Int }
deriving (Show, Eq)

And define a game world:

data World = World { board :: Board, penguinPos :: Pos,
penguinDir :: Dir,
heartCount :: Int } deriving (Show)

It was painful, took an embarrassingly long time, and this can’t possibly be how
I want to keep it indefinitely, but I finished slice which treats a list of lists of
tiles like a 2-dimensional array and gives us what the penguin sees before him,
looking in a given direction:

slice :: Board -> Pos -> Dir -> [Tile]
slice board pos East = (drop (posX pos) $
board !! (posY pos)) ++ [Edgel

12

slice board pos South = (drop (posY pos) $
(transpose board) !! (posX pos)) ++ [Edgel

slice board pos West = (reverse $ take (posX pos + 1) §
board !! (posY pos)) ++ [Edge]

slice board pos North = (reverse $ take (posY pos + 1) §
(transpose board) !! (posX pos)) ++ [Edgel

Let’s just leave that as it is for now and use it, with the intent of replacing it
with a real array of some sort later on. I still have to figure out how to merge a
modified penguin track with an unmodified board to create the next state of the
entire board... that’s not going to be pretty, but it’s doable.

So, one of the things I really love about Haskell is that once you get these pieces,
they really do start come together nicely. Let’s go ahead and define the first
board. I could make it from the strings or a run-length encoding or something,
but for now let’s just bite the bullet and build the list the hard way:

get_initial_board :: [[Tilel]

get_initial_board = [[Tree,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Tree,Empty,Empty,
Empty,Empty,Empty,Ice_Block,Empty,Empty],
[Tree,Empty,Bomb,Empty,Mountain,Empty,
Heart,Ice_Block,Heart,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Empty,Empty,
Tree,Empty,Empty,Tree,Empty,Empty],
[Tree,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Heart,Empty,
Empty,Empty,Mountain,House,Empty,Empty],
[Tree,Tree,Empty,Empty,Empty,Empty,
Tree,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Empty,Empty]]

penguin_view :: Board -> Pos -> Dir -> [Tile]
penguin_view board pos dir = drop 1 $ slice board pos dir

So now we can actually start doing stuff with this. Here’s what’s in front of the
penguin, from different vantage points, facing in different directions:

*Main> penguin_view get_initial_board (Pos 0 0) East
[Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Empty,Empty,Empty,Tree,Empty,Empty,Empty,Empty,
Empty,Ice_Block,Empty,Empty,Edge]

*Main> penguin_view get_initial_board (Pos 0 0) South
[Tree,Tree,Tree,Edgel

13

¢ A V=V

Figure 2: “Polar Level 1”

*Main> penguin_view get_initial_board (Pos 0 0) West
[Edge]

*Main> penguin_view get_initial_board (Pos O 0) North
[Edge]

*Main> penguin_view get_initial_board (Pos 3 21) North
[House,Tree,Ice_Block,Edge]

Fun! Tomorrow, if I can manage it.. an updated world.

Day 3 Comments

No comments were left on the Day 3 post.

Day 4
OK, things are getting meaty: I've made some minor modifications to World:

data World = World { wBoard :: Board, wPenguinPos :: Pos,
wPenguinDir :: Dir, wHeartCount :: Int }
deriving (Show)

This extracts the sequence of tiles in front of the penguin, for various directions,
from a nested list representation of the board:

view :: Board -> Pos -> Dir -> [Tile]
view board pos East = (drop (posX pos + 1) §
board !! (posY pos)) ++ [Edge]
view board pos South = (drop (posY pos + 1) §
(transpose board) !! (posX pos)) ++ [Edgel
view board pos West = (reverse $ take (posX pos) §$
board !! (posY pos)) ++ [Edgel

14

view board pos North = (reverse $ take (posY pos) $
(transpose board) !! (posX pos)) ++ [Edgel

I have fleshed out slide and collide after some testing; I haven'’t tested all my
known cases yet. Maybe tomorrow. Here is how I create the initial world:

init_world :: World
init_world = (World init_board (Pos O O) South 3)

South because in the south-facing representation, the penguin’s face is visible
(although of course I don’t have a GUI yet).

A little utility function for clarity:

nest :: [a]l -> [[all
nest xs = [xs]

And now, deep breath, the logic to build the next board out of the current board
combined with a replaced list of tiles that may have been changed due to object
interaction. It gets pretty ugly here when we’re undoing the appending of Edge
with init, and undoing the reversing that view has done when looking North and
West, and working with the transposed board for North and South. There
are some extra line breaks in there that are not in the working code. I have an
issue with my let clauses not compiling correctly if I break the lines. I'm sure
there’s a prettier workaround, and I will look that up, but after going down a
rabbit hole of Haskell syntax, I have timed out for today and right now I’'m just
happy it runs:

next_board :: Board -> Pos -> Dir -> (Bool, Board)
next_board board pos East =
let (penguin_could_move, updated_view) =
step $ view board pos East
in (
penguin_could_move,
take (posY pos) board ++
nest (
(take (posX pos + 1)
(board !! (posY pos))) ++
(init updated_view)) ++
drop (posY pos + 1) board)
next_board board pos South =
let (penguin_could_move, updated_view) =
step $ view board pos South
in (
penguin_could_move,
transpose (
take (posX pos) (transpose board) ++
nest (
(take (posY pos + 1)

15

((transpose board) !! (posX pos))) ++
(init updated_view)) ++
drop (posX pos + 1) (transpose board)))

next_board board pos West =
let (penguin_could_move, updated_view) =
step $ view board pos West
in (
penguin_could_move,
take (posY pos) board ++
nest (
(reverse (init updated_view)) ++
(drop (posX pos)
(board !! (posY pos)))) ++
drop (posY pos + 1) board)

next_board board pos North =
let (penguin_could_move, updated_view) =
step $ view board pos North
in (
penguin_could_move,
transpose (
take (posX pos) (transpose board) ++
nest (
(reverse (init updated_view)) ++
(drop (posY pos)
((transpose board) !! (posX pos)))) ++
drop (posX pos + 1) (transpose board)))

That... seems like way too much code, and I would like to kill it in favor of using
a real array type — soon. The tutorials were pretty insistent that I try to use
lists. I’'m pretty sure this is not what they meant. I will say that I was really
impressed, writing this, how much of it worked the first time, as soon as I got it
past the compiler. But that doesn’t necessarily mean this is the best possible
design for this code.

Anyway, updating penguin pos:

next_ppos :: Pos -> Dir -> Pos

next_ppos pos East = (Pos (posY pos) (posX pos + 1))
next_ppos pos South = (Pos (posY pos + 1) (posX pos))
next_ppos pos West = (Pos (posY pos) (posX pos - 1))
next_ppos pos North = (Pos (posY pos - 1) (posX pos))

And, updating the world. I had a similar problem with the line-broken let clause
here:

next_world :: World -> Dir-> World

16

next_world old_world move_dir =
let (can_move, board) = next_board (wBoard old_world)
(wPenguinPos old_world) (wPenguinDir old_world)
in
if (move_dir /= wPenguinDir old_world)
then (World (wBoard old_world)
(wPenguinPos old_world)
move_dir (wHeartCount old_world))
else (World board
(next_ppos (wPenguinPos old_world)
(wPenguinDir old_world))
(wPenguinDir old_world)
(wHeartCount old_world))

Now, some pretty-printing, since it gets pretty tedious to visualize the board
from reading the dumped-out list in GHCI:

pretty_tiles :: [Tile] -> String
pretty_tiles [] = "\n"
pretty_tiles (t:ts) = case t of

Empty - " "
Mountain -> "mtn "
House => "hou "
Ice_Block -> "ice "
Heart -> "hea "
Bomb -> "bom "
Tree -> "tre "
Edge => “H### "

++ pretty_tiles ts

pretty_board :: Board -> String
pretty_board [] = ""
pretty_board (ts:tss) = pretty_tiles ts ++ pretty_board tss

pretty_world :: World -> String
pretty_world world =

"penguin @: " ++ show (wPenguinPos world) ++
", facing: " ++ show (wPenguinDir world) ++
" hearts: " ++ show (wHeartCount world) ++

"\n" ++ pretty_board (wBoard world)

And here’s where the rubber meets the road — or, rather, fails to. I need state,
at least simulated state. I messed with state monads for a while but I'm not
quite ready. I will tackle that another day. I messed with trying to capture a
list in a closure and append a series of successive worlds to it but while that
would work fine in Scheme, Lisp, or Dylan I realized that in Haskell I was just
fighting the entire language design. So I gave in and did this stupid thing for

17

now, just so I could see my world updating and start to validate that all the tile
interactions on the board work:

main :: I0 ()

main = do
putStrLn "ArcticSlide start"
let worldO = init_world
putStrln $ pretty_world worldO

-— 21 East
let worldb =
next_world (next_world (next_world (next_world (
next_world world0 East) East) East) East) East
let worldl0 =
next_world (next_world (mnext_world (next_world (
next_world world5 East) East) East) East) East
let worldlb =
next_world (next_world (next_world (next_world (
next_world worldl0 East) East) East) East) East
let world20 =
next_world (next_world (next_world (next_world (
next_world worldl5 East) East) East) East) East
let world21 = next_world world20 East
putStrln $ pretty_world world21
-— 2 South
let world23 = next_world (next_world world21 South) South
putStrln $ pretty_world world23
-- 3 East
let world26 = next_world (next_world (
next_world world23 East) East) East
putStrLn $ pretty_world world26
-— 2 North
let world28 = next_world (next_world world26 North) North
putStrln $ pretty_world world28
-— 2 West
let world30 = next_world (next_world world28 West) West
putStrln $ pretty_world world30

That is far from what I’d like to be doing eventually with managing game moves,
and I still haven’t put in any handling for the heart count, but it works:

Apologies for the formatting with my current web page template; this looked OK
in Blogger. I need to update the template to support wider monospaced text blocks,
but I am not a CSS guru by any means.

ArcticSlide start
penguin @: Pos {posY = 0, posX = 0}, facing: South, hearts: 3
tr tr ic

ho

tr tr _________

tr ___bo ___mt ___he iche ___________ ________________ tr

T he ______

tr tr ____________ L7
penguin @: Pos {posY = 0, posX = 21}, facing: West, heart

tr __ tr ic ____
tr ___bo ___ mt ___he iche _____ tr

tr he __

tr tr tr

Aaaand... the penguin has pushed the ice block in the upper right to the

=
s: 3
__mt
west,

and it has slid west and become blocked by the tree. That’s... good, right? My
brain is a little fried. All that to update a game board. I need a break, and

maybe a stiff drink. I'm going to have to fortify myself before I tackle the
monad. But I am determined!

Day 4 Comments
Blogger reader Roland wrote:

Hi Paul, I like your post about this Polar game. Some remarks about
Edge.

I suggest you factor out ++ [Edge] from the view function as:

view :: Board -> Pos -> Dir -> [Tile]

view board pos dir = (view' board pos dir) ++ [Edge]
where

view' board pos East = (drop (posX pos + 1) $§ ...

Do you really want to add the Edge tile every time you construct
a slice? An alternative would be to have an addEdge function,
that adds all the edges to a board after you create it with get__ini-
tial _board.

Do you really need the Edge tile? If the penguin sees an empty list

of tiles, it’s at the edge of his nice small world. You could avoid all
the runtime errors like:

19

state

collide [] = error "traverse empty list!" or
step [] = error "step: empty list!"

If you have no runtime errors, the chances that your program fails
are much smaller!

Thanks and regards,

Roland
He left a second comment:

Hi Paul,

next__ppos could be written as:

next_ppos :: Pos -> Dir -> Pos
next_ppos pos dir = Pos (posY pos + fst step) (posX pos + snd step)
where
step = delta dir
delta East = (0, 1)
delta South = (1, 0)
delta West = (0, -1)
delta North = (-1, 0)

So you split the adding from the direction stuff.
Regards

R.
I replied:
Hi Roland,

Yeah, it has occurred to me that if I'm actually using lists where I
can detect the end case, there isn’t really a need for the Edge tile. I
could just delete it entirely. It is a hold-over from the Objective-C
version where I use it as a flag to avoid dereferencing array elements
past the bounds.

Thanks for the simplification of next_ ppos — that’s a good idea.

It also occurred to me as I ate dinner last night that I can use a
fold on a list of moves to collect up the updated boards. I don’t
think in the fully functional mind-set yet. But that should be easy
to implement — I'll do that for next time, which should allow me to
get the rest of the boards up and running quickly and validate all
the cases.

20

Day 4 and a Half: Folding a Penguin

So, just a quick update today. While I was cooking bacon this morning I looked
at comments and tried to implement an idea I had last night. Roland suggested
I could get rid of Edge. I had already been asking myself this. Using a special
flag value for the edge-of-board case came from the Objective-C version where
I wanted to avoid reading tiles outside the bounds of the board array. When
using lists there is a built-in termination condition, so Edge is gone completely.

Roland also suggested a simplified next_ ppos, like so:

next_ppos :: Pos -> Dir -> Pos
next_ppos pos dir = Pos (posY pos + fst step)
(posX pos + snd step)
where step = delta dir
delta East = (0, 1)
delta South = (1, 0)
delta West = (0, -1)
delta North = (-1, 0)

So that’s in there now. Thanks, Roland!

The next thing I wanted to do is get rid of that ugly test code with all the nested
calls to next__world. I was re-reading Learn You a Haskell and it occurred to
me that this sort of thing — distilling a list — is what folds are for. And then,
a minute later, that I don’t actually want to fold the worlds down to one final
world — I want to capture all the intermediate worlds as we process a list of
moves. And that’s what a scan is for. So we're conducting surveillance on the
penguin as he goes about his business. GHCI tells me that the type of scanl
is (a->b->a)->a-> [b] -> [a]. So I'm calling it with a function that
takes a World and a Dir and returns a World. That’s the (a -> b -> a) part.
Then it gets an initial World, that’s the a, and a list of elements of type Dir,
that’s the [b], and returns a list of elements of type World, that’s [a].

moves_to_dirs :: [(Dir, Int)] -> [Dir]
moves_to_dirs [] = []
moves_to_dirs (m:ms) =
replicate (snd m) (fst m) ++ moves_to_dirs ms

moves_board_1 = [(East,21),(South,2), (East,3),(North,2), (West,2)]
move_sequence :: [(Dir,Int)] -> [World]
move_sequence repeats = scanl next_world init_world steps

where steps = moves_to_dirs repeats

main :: I0 ()

21

main = do
mapM_ putStrLn pretty_worlds
where worlds = move_sequence moves_board_1

And that gives me the whole shebang, ending in:

penguin @: Pos {posY = 0, posX = 22}, facing: West, hearts: 3

tr ___ tr ____ ic
tr __bo ___ mt ___he iche _____ tr ___ tr
tr __ he mt ho
tr tr tr

tr __ tr ic ____
tr __bo ___ mt ___he iche ____ tr __ tr
tr __ he __ mt ho
tr tr tr

Oh, if you just want to see the final result, foldl will work here. Their types
are almost identical, except that foldl returns a single a (in this case, a World)
instead of a list of elements of type World. So a function to make use of that
just returns a single World, but everything else is the same. Like so:

move_sequence' :: [(Dir,Int)] -> World
move_sequence' repeats = foldl next_world init_world steps
where steps = moves_to_dirs repeats

And then I can display both:

main :: I0 O
main = do
mapM_ putStrLn pretty_worlds
putStrLn pretty_final_world
where worlds = move_sequence moves_board_1
final_world = move_sequence' moves_board_1
pretty_worlds = map pretty_world worlds

I like it — examples of fold and scan that are a little more complex than the
usual textbook examples. Personally I'd rather read more of those and less
about how we can implement some simple math operation that can be trivially
implemented in a dozen other, more readable ways.

Day 4 and a Half Comments

Blogger reader Jeff Licquia wrote:

Hi! Fellow Haskell newbie here, so please don’t take this as “advice
from the sages” as much as “blatherings from the potentially con-
fused”.

22

I was fascinated by the series of blog posts, mostly because your
next__board function bothered me. It seemed to me like it did
too much, and could be factored down a bit more. In my expe-
rience, Haskell is about splitting actions down to little nubs, and
re-composing them in fancy ways, and it seemed that next_ board
could do that.

So first I factored out the multiple-return-value part:

next_board :: Board -> Pos -> Dir -> (Bool, Board)
next_board board pos dir =
let (penguin_could_move, updated_view) =
step $ view board pos dir
in (penguin_could_move, update_board_from_view board
pos dir updated_view)

After cutting-and-pasting my way to a working update_ board_ from_ view,
I recognized that there are basically two operations: applying a

view to a row forwards, and applying a view to a row backwards.

That looked like this:

apply_view_to_row :: [Tile] -> Int -> Bool -> [Tile] -> [Tilel
apply_view_to_row orig pos True update =

take (pos + 1) orig ++ (init update)
apply_view_to_row orig pos False update =

(reverse (init update)) ++ (drop pos orig)

That takes care of moving East and West. For North and South, I noticed
that the operations were exactly the same once you ignored the transposes and
swapped the X and Y parameters. So:

apply_view_to_rows :: Board -> Int -> Int -> Bool -> [Tile] -> Board
apply_view_to_rows orig row pos is_forward update =
take row orig ++
nest (apply_view_to_row (orig !! row) pos is_forward update)
++ drop (row + 1) orig

update_board_from_view :: Board -> Pos -> Dir -> [Tile] -> Board
update_board_from_view board pos dir updated_view
| is_eastwest = apply_view_to_rows board (posY pos) (posX pos)
is_forward updated_view
| otherwise = transpose (apply_view_to_rows (transpose board)
(posX pos) (posY pos) is_forward updated_view)
where is_forward = elem dir [East, South]
is_eastwest = elem dir [East, West]

There’s probably more interesting refactorings that could be done,
but this looks a lot better to me.

23

Thanks for the brain teaser!
I replied:

Thanks, Jeff! Some good ideas there. I was not really happy with
the original functions. I had it in mind that I wanted to come back
and work on them later, but once it worked I wanted to push on
first to get to the point where I could exercise the game play. I
am hoping there will be a major simplification possible by moving
to an array type. It seems like there should be a way to express
extracting or replacing a whole (or partial) row or column from an a
2-D array in one line of code. If so then all the game logic outside of
pretty-printing and maybe a GUI ought to fit on a page, and read as
simply as the concept is.

Blogger user Unknown wrote:

Since you're implementing this game at least partly as a learning
exercise, you may not be interested in using any other libraries.
However, I do have a library for working with all kinds of grids/tiles
for board games. You can install it using the command cabal install
grid.

The comment included this GitHub link and a second link to the User Guide.

I am not able to determine the date this comment was left, but I think it may
have been left quite a long time after the original post. I don’t recall investigating
the Grid library, but if I get back to this project, I should take a look.

Day 5: Array v. List

So, a little more progress in learning me a Haskell: I’ve managed to implement
the board using an immutable array. There’s good news and bad news here. If
you’re an old hand at functional programming, you probably know all this and
more, but I needed to do a little thinking on purely functional data structures.
I have not really been satisfied with the amount of code necessary to manage
my 2-D board in a list. I spent some time doodling some possible alternative
implementation before concluding that purely functional data structures — in
which nodes are never mutated — are hard. Anything I might be accustomed to
doing with double or multiply-linked lists is pretty much a washout, since you
can’t ever share structure. In fact, I think one data structure I came up with
might not be constructible at all without being able to mutate links between
nodes. So I'm starting to understand why the tutorials all advise me to stick
with lists.

Nevertheless, this is a small problem, and efficiency is not my biggest concern, at
least not in the learning phase. I wanted to figure out how to use an immutable

24

https://github.com/mhwombat/grid
https://github.com/mhwombat/grid/wiki

array. The tutorials have not been very satisfying. They seem to assume that
anything this trivial is too trivial to demonstrate. But here’s what I did.

First, the type of an array in Haskell encodes the number of dimensions and the
node type, but not the size. You set that when you call the constructor. Here’s
a 2-D array type for my board:

type BoardArray = Array (Int, Int) Tile

I specified some bounds:

max_row :: Int
max_row = 3
max_col :: Int

max_col = 23

And I should point out one of the fundamental problems with using arrays: it’s
very easy to kill your program by exceeding the array bounds. There is a similar
problem with head, but when writing functions with pattern-matching and
guards there are pretty accepted conventions for dealing with empty lists. I
suppose one could use guard patterns on all array accesses, but it starts to seem
a little silly.

The next thing is that a given array works with some auxiliary types. The //
operator takes an array and a list of tuples and builds a new array with updated
content. The type of that list of tuples is this:

type TileAssoclList = [((Int, Int), Tile)]

For accessing multiple items in an array, the range method builds lists of indexing
tuples. The syntax to range requires tuples of tuples, with the parentheses piling
up, so I wrapped it up in a function:

make_2d_range :: Int -> Int -> Int -> Int -> [(Int, Int)]
make_2d_range yO x0 y1 x1 = range ((yO, x0), (y1, x1))

So how does that work? It just iterates coordinates, permuting from higher
indices to lower, like so:

*Main> make_range 0 0 0 1
[€0,0),(0,1)]
*Main> make_range 0 0 1 3

[(O)O)’(0’1)’(0,2))(053),(1’0)’(1)1)’(1,2))(1’3)]

For this problem domain, I need to know how reversed ranges work. For example,
when the penguin is facing west, I want to build a range and a list of tiles in
reverse index order. Can range do that for me?

*Main> make_range 0 23 0 O

(1

25

Ah... no. I guess that would have been too easy. So I’ll have to account for those
cases specially. Here’s a function to get the penguin’s view out of a 2-D array of
tiles, in the form of a tile association list I can use to create a freshly created
“modified” array (it’s not really modified, but a new one is created with the
updates from that list applied):

view_array :: BoardArray -> Pos -> Dir -> TileAssocList
view_array board pos dir =
let row = (posY pos)
col = (posX pos)
coord_list = case dir of
East -> if (col == max_col)
then []
else make_2d_range row
(col + 1) row max_col
South -> if (row == max_row)
then []
else make_2d_range
(row + 1) col max_row col
West -> if (col == 0)
then []
else make_2d_range
row O row (col - 1)
North -> if (row == 0)
then []
else make_2d_range
0 col (row - 1) col
tile_assoc = zip coord_list
(map ((!) board) coord_list)
in case dir of
East -> tile_assoc
South -> tile_assoc
West -> reverse tile_assoc
North -> reverse tile_assoc

That’s not so bad. The key to this function is the ! operator — this gets a
tuple and an array and returns an element — and I zip the elements up with
their coordinate tuples. Note that a lot of the bulk of this function is handling
the edge cases, because we don’t want to apply an out-of-range coordinate
tuple to !. There may still be a shorter, clearer implementation possible. By
comparison, here’s a list-of-lists version factored a bit using currying to make
it as self-documenting as I could get it — note the use of id to let me return a
general function as orient. I’'m sure it doesn’t impress FP whizzes, but I'm kinda
proud of it — I feel like I'm starting to use Haskell a little more idiomatically:

view_list :: BoardList -> Pos -> Dir -> [Tile]
view_list board pos dir =

26

let row = (posY pos)
col = (posX pos)
transposed = elem dir [South, North]
reversed = elem dir [West, North]
orient | reversed = reverse
| otherwise = id
trim = case dir of
East -> drop (col + 1)
South -> drop (row + 1)
West -> take col
North -> take row
extract | transposed = (transpose board) !! col
| otherwise = board !! row
in orient $ trim $ extract

Testing view__list:

*Main> view_list init_board_list (Pos 0 0) East
[Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,Empty,
Empty,Empty,Tree,Empty,Empty,Empty,Empty,Empty,Ice_Block,Empty,Empty]

*Main> view_array init_board_array (Pos 0 0) East

[((0,1) ,Empty), ((0,2) ,Empty), ((0,3) ,Empty), ((0,4) ,Empty),
(€0,5) ,Empty), ((0,6) ,Empty), ((0,7) ,Empty), ((0,8) ,Empty),
(€0,9) ,Empty) , ((0,10) ,Empty), ((0,11) ,Empty), ((0,12) ,Empty),
((0,13) ,Empty), ((0,14) ,Empty), ((0,15) ,Tree), ((0,16) ,Empty),
(€0,17) ,Empty), ((0,18) ,Empty), ((0,19) ,Empty), ((0,20) ,Empty),
((0,21) ,Ice_Block), ((0,22) ,Empty), ((0,23) ,Empty)]

Now we can write step. Here’s the list version I've presented before:

step_list :: [Tile] -> (Bool, [Tile])
step_list [] = (False, [])
step_list ts = if walkable (head ts) then (True, ts)
else (False, collide ts)

The array version is a little more complicated, because I want to strip the list 1
pass to collide down to just a list of tiles, in order to retain that clean logic for
dealing with just a list of tiles. So I unzip my coordinate tuples from my tiles,
get a potentially updated tile list, and zip it back together. That complicates it
a bit, like so:

step_array :: TileAssocList -> (Bool, TileAssoclist)
step_array [] = (False, [])
step_array tile_assoc = if (walkable $ head tile_list)
then (True, tile_assoc)
else (False, zip coord_list
(collide tile_list))
where (coord_list, tile_list) = unzip tile_assoc

27

I’'m going to have to uglify my nice collide method a bit because I need to
return at least one additional value — indicating whether collide consumed a
heart, so that we can keep score of the game.

Next up, you can see the array and list solutions start to diverge hugely. It’s
hard to merge the list-based board back together with the potentially updated
tile list to create the next immutable list-based board. My original method was
pretty hideous. With Jeff’s refactoring it’s still a lot of code. (Note: T don’t have
this completely working yet; I'm getting a run-time error about bad patterns I
haven’t quite figured out yet):

next_board_list :: BoardList -> Pos -> Dir ->
(Bool, BoardList)
next_board_list board pos dir =
let (penguin_could_move, updated_view_list) =
step_list $ view_list board pos dir
in (penguin_could_move, update_board_from_view_list
board pos dir updated_view_list)

apply_view_list_to_row :: [Tile] -> Int -> Bool ->
[Tile] -> [Tile]
apply_view_list_to_row orig pos True update =
take (pos + 1) orig ++ (init update)
apply_view_to_row orig pos False update =
(reverse (init update)) ++ (drop pos orig)

apply_view_list_to_rows :: BoardList -> Int -> Int ->
Bool -> [Tile] -> BoardList
apply_view_list_to_rows orig row pos is_forward update =
take row orig ++
nest (apply_view_to_row
(orig !! row) pos is_forward update) ++
drop (row + 1) orig

update_board_from_view_list :: BoardList -> Pos -> Dir ->
[Tile] -> BoardList

update_board_from_view_list board pos dir updated_view_list
| is_eastwest = apply_view_list_to_rows board
(posY pos) (posX pos)
is_forward updated_view_list
| otherwise = transpose (apply_view_list_to_rows
(transpose board)
(posX pos) (posY pos)
is_forward updated_view_list)
where is_forward = elem dir [East, South]
is_eastwest = elem dir [East, West]

28

By comparison, the array is much more suited to create an updated version of
itself, given a list of elements to update. This is handled by the // function,
in this simple function to create the next board in array form, called from
step__array:

next_board_array :: BoardArray -> Pos -> Dir ->
(Bool, BoardArray)
next_board_array board pos dir =
let (penguin_could_move, updated_view) =
step_array $ view_array board pos dir
in (penguin_could_move, board // updated_view)

I like that — it looks like we’re working with the data structure rather than
against it, although the overhead to manage the ranges and lists still feels to
me more complicated than it should be. That complexity carries over elsewhere:
for example, pretty-printing the array requires that range logic again. In fact I
wind up just wrapping up and re-using the logic to pretty-print the list, so you
can see how much additional code I needed:

pretty_tiles :: [Tile] -> String

pretty_tiles [] = "\n"

pretty_tiles (t:ts) = case t of
Empty -> " n
Mountain -> "mt "
House -> "ho "
Ice_Block -> "ic "
Heart -> "he "
Bomb -> "bo "
Tree -> "tr "

++ pretty_tiles ts

pretty_board_list :: BoardList -> String
pretty_board_list [] = ""
pretty_board_list (ts:tss) =

pretty_tiles ts ++ pretty_board_list tss

split_tile_list :: [Tile] -> [[Tile]]
split_tile_list []1 = []
split_tile_list ts = [take tiles_in_row ts] ++
(split_tile_list $
(drop tiles_in_row) ts)
where tiles_in _row = max_col + 1

pretty_board_array :: BoardArray -> String
pretty_board_array board = pretty_board_list split_tiles
where full_range = make_2d_range O O max_row max_col
all_tiles = map ((!) board) full_range

29

split_tiles = split_tile_list all_tiles

As an aside, it seems like there ought to be at least one standard list split
function, but it looks like folks don’t really agree on how it should work.

So there it is — the array is kind of a mixed blessing here. I haven’t done any
large-scale profiling on it, to determine if the need to generate a whole new array
each pass is a big loss, compared to the potential structure-sharing in the list
implementation. It simplifies some of the code dramatically, while adding a layer
of dealing with ranges and lists of tuples everywhere — as soon as we want to
pull items out of the array, or merge them back in to a new array, we're dealing
with lists again. Still, given the ugliness of the list merge code, it seems like the
more natural choice for this kind of small game board data structure.

Day 5: Array v. List Comments
Blogger reader Jeff Licquia wrote:

Took care of a little insomnia by fixing your list implementation.
There are two problems.

First: the bad patterns error comes from two places where ap-
ply__view_ to_ row wasn’t renamed to account for the “_list_”
implementation. A quick search-and-replace fixed that right up.

After that, the list version “steals” tiles; each eastward move at the
beginning chops a tile off the end, and eventually the moves collide
with the shortened list and things blow up. I remembered you used
to have Edge tiles, but decided to get rid of them, so I guessed
that the “init update” calls in apply_ view__list_ to_ row were for
chopping off the Edge tile that’s no longer there, so I just took out
the “init” call. Either my hunch was right, or I'm just lucky. :-)

After those two fixes, the list and array implementations seem to
produce identical output. I know you’re more a fan of the array
version, but I want to see the all-important performance evaluation
later, which won’t happen with broken lists.

I really like the new view functions. I still tend to be leery of the
“case dir of..” thing happening over and over, but am getting tired
again (yay! die, insomnial), so not seeing the problem clearly.

Also, the pretty printer stuff is screaming for something like a fold

or map, but I'm not seeing how that improves things at the moment.
Maybe some sleep will bring clarity.

30

Blogger reader Michael Alan Dorman said:

I think (as something of a Haskell newbie myself, so take this with
a grain of salt) what you want to be looking at is lenses to simplify
your board manipulation code. http://www.youtube.com/watch?v=
cefnmjtAolY is a presentation from Edward Kmett about them.

I replied to Jeff:

Thanks, Jeff. Sorry to hear about the insomnia! But I'm happy for
the help.

Yes, when I got rid of Edge it broke a lot of things including my
collide and slide methods, and that was not immediately apparent. I
had to rewrite that extensively. I'm keeping the GitHub version up
to date. But I'm not going to go back and revise all the blog posts
as I go — that way lies madness :)

I replied to Michael:

Michael, I am vaguely aware of lenses as something I would like to
master... and I've still got to get a better handle on monads. I feel
like I understand them when explained, but attempting to use one in
my own code outside of IO has been a complete failure. I will take a
look at that video.

Jeff added another comment:
I know this is your learning exercise, not mine... but I ended up
implementing scorekeeping with the Writer monad.
Are you interested in seeing it, or do you not want the fun spoiled?
I replied to Jeft:

Jeff, I'd love to see it! The feedback and comments are what makes
this really valuable for me to blog about, rather than just writing it
and keeping the code to myself. Maybe it will be the moment when
I achieve monad enlightenment! If you like, send me an e-mail and
T’ll make it a real entry. Or actually if you have a Blogger account, I
could enable you as a contributor on Blogger, at least I think I could.

I wrote:

I am taking a sanity break from glowing screens over the Fourth of
July Weekend — T’ll get back to looking at this next week.

Blogger reader Cake wrote:

Wow, I'm so happy I found your blog. I was trying to model a game
in haskell recently (I thought it would be a good training), and I
stumble on a lot of things you did, like Arrays.

31

http://www.youtube.com/watch?v=cefnmjtAolY
http://www.youtube.com/watch?v=cefnmjtAolY

T’ll be sure to keep an eye on your articles now :)

Day 5 and a Half: Refactoring with a Monad

The job search has eaten my brain for the last few days — have I mentioned yet
that I need a job? Oh, yes, I believe I may have — but I'm taking some time to
press on with my Haskell larnin’, especially since I've been getting great, helpful
feedback.

The first thing I did was make some minor fixes to the list implementation, as
suggested by Jeff. It’s working now and my version looks like this:

next_board_list :: BoardList -> Pos -> Dir ->
(Bool, BoardList)

next_board_list board pos dir =
let (penguin_moved, updated_view_list) =
step_list $ view_list board pos dir
in (penguin_moved, update_board_from_view_list
board pos dir updated_view_list)

apply_view_list_to_row :: [Tile] -> Int -> Bool ->
[Tile 1 -> [Tilel

apply_view_list_to_row orig pos True update =
take (pos + 1) orig ++ update

apply_view_list_to_row orig pos False update =
(reverse update) ++ (drop pos orig)

apply_view_list_to_rows :: BoardList -> Int -> Int ->
Bool -> [Tile 1]
-> BoardList

apply_view_list_to_rows orig row pos is_forward update =
take row orig ++
nest (apply_view_list_to_row (orig !! row) pos
is_forward update) ++
drop (row + 1) orig
where nest xs = [xs]

update_board_from_view_list :: BoardList -> Pos ->

Dir -> [Tile]
-> BoardList

32

update_board_from_view_list board pos dir updated_view_list
| is_eastwest = apply_view_list_to_rows board
(posY pos) (posX pos)
is_forward updated_view_list
| otherwise = transpose (apply_view_list_to_rows
(transpose board)
(posX pos) (posY pos)
is_forward updated_view_list)
where is_forward = elem dir [East, South]
is_eastwest = elem dir [East, West]

Now, it turns out that Jeff did more than suggest a refactoring — he actually
did something I haven’t quite gotten my head around yet, which is to refactor
my code to use a monad for managing some of this task. He forked my code in
his own GitHub repo here and sent me some notes to share on my blog. Here’s
part of what he said:

The way I got my head wrapped around monads was to think of
them as “important stuff to do, but not the point.” You need to do
some housekeeping that’s important, but it’s not the reason you're
writing this function. The classic example is division. You’re writing
a math library, and you need to implement division. Division by zero
is something you need to deal with sanely, but it’s not the point;
you're writing the function because you want to divide by things that
aren’t zero. So, to handle the zero case, you return a Maybe instead
of a simple number. Only now you can’t just add numbers together
with division, because you're dealing with Maybes, not numbers. So
you end up implementing addition with Maybes, except that makes
no sense, as adding never fails, and people using your math library
get annoyed because now they have to deal with division-by-zero
errors even when they’re not dividing, and it’s a mess. Except —
Maybe is a monad. So you skip all that mess, implement division
with a Maybe, everything else without, and use the cool monad and
functor features of the language to bridge the gaps. The same pattern
exists with scorekeeping. A lot of the functions in your code need
to keep track of the score and occasionally award points, but scores
aren’t “the point” of, say, collide. And when you start thinking
about all the places you need to worry about scores, you start seeing
scorekeeping infect all kinds of weird places in your code. I think
you even mentioned having to “uglify” your code with scorekeeping
in your blog post.

Yes, yes, yes — mainly the chain of function invocations that handle generating
the next board, down to the collide calls. Because it’s only at the point where
a heart disappears that we can decrement the heart count. Without state, I
can’t make this a global state. In a purely function form, I have to “thread” the

33

https://github.com/licquia/arctic-slide-haskell

indication that the heart count should be decreased through the whole chain of
function signatures, which now all have to return an extra thing.

So, minimize the ugly with monads. Just do what you need to do to
pass around the score, and deal with it when it’s appropriate. (In my
implementation, that was in next__world). The Writer monad is
perfect for the job. It uses a monoid, which is a fancy ways of saying
“something that knows how to grow”. Lists are monoids, because you
can append to them. Numbers are monoids, because you can add
and multiply them. And so on. What the Writer monad does is take
care of the adding part. You just return the thing you're working
with, and the monad tacks it on using the monoid. Specifically, with
scorekeeping, you just note how many points each individual action
takes, and the monad does the adding together. When you finally
deal with the score in next__world, you get all the accumulated
points in one tidy variable.

OK, cool... let’s see what he came up with!

import Control.Monad.Writer

—-— Keep track of the score with a writer monad
type ScoreTracker = Writer (Sum Int)

OK, let me pause there and see if I can make sense of that. Learn You a Haskell
says

Whereas Maybe is for values with an added context of failure and
the list is for non-deterministic values, the Writer monad is for
values that have another value attached that acts as a sort of log
value. Writer allows us to do computations while making sure that
all the log values are combined into one log value that then gets
attached to the result.

OK, I think I get that — in Learn You it is used for implementing logging, not
scoring of a game, but it seems like it could be generalizable. The example given
does this just kind of thing I was mentioning — makes a simple function return
a tuple to pass both the actual interesting return value and the log string, or in
our case I think we want a score. Learn You continues:

When we were exploring the Maybe monad, we made a function
applyMaybe, which took a Maybe a value and a function of type
a -> Maybe b and fed that Maybe a value into the function, even
though the function takes a normal a instead of a Maybe a. It did
this by minding the context that comes with Maybe a values, which
is that they are values with possible failure. But inside the a ->
Maybe b function, we were able to treat that value as just a normal

34

http://learnyouahaskell.com/for-a-few-monads-more

value, because applyMaybe (which later became »=) took care of
checking if it was a Nothing or a Just value. In the same vein, let’s
make a function that takes a value with an attached log, that is, an
(a, String) value and a function of type a -> (b, String) and feeds
that value into the function. We’ll call it applyLog. But because an
(a, String) value doesn’t carry with it a context of possible failure,
but rather a context of an additional log value, applyLog is going
to make sure that the log of the original value isn’t lost, but is joined
together with the log of the value that results from the function.

Oooh, again, that sounds very promising. So I'm convinced that Writer is the
right abstraction here. The values that Writer gets are Sum and Int — Sum
is our monoid, Int is a type we’re going to use to accumulate the updated score.
(To go along with the Polar game logic, I think there really should ultimately be
two scores — one should be the heart count for a given board, which decrements,
and gets tested against zero to indicate board completion, and the other should
be a level, which increments as the player moves through the levels, but never
mind that for now).

Jeff then came up with:

noscore :: a —> ScoreTracker a
noscore x = writer (x, Sum 0)

score :: a —> ScoreTracker a
score x = writer (x, Sum 1)

Two functions, noscore and score. I think these are both monadic return —
injecting a value, passing it to the next step while applying the sum operation.
So let’s see how he uses it. here’s my slide function:

slide :: [Tile] -> [Tile 1]
slide (Ice_Block : ts) | (null ts) ||
(blocking $ head ts) = (Ice_Block : ts)

slide (t : Empty : ts) =
(Empty : (slide (t : ts)))

slide (t : ts) | (null ts) ||
(blocking $ head ts) = collide (t : ts)

I’'m not going to take Jeff’s current version, because he’s restructured it a bit using
guards, which obscures just the differences due to the use of the ScoreTracker, but
here’s a version that does the same thing. We don’t have to explictly construct
the return tuples:

slide' :: [Tile] -> ScoreTracker [Tile]

slide' (Ice_Block : ts) | (null ts) ||

35

(blocking $ head ts) = noscore (Ice_Block : ts)

slide' (t : Empty : ts) =
noscore (Empty : (slide (t : ts)))

slide' (t : ts) | (null ts) || (blocking $ head ts) =
collide (t : ts)

And this doesn’t actually compile. Note that collide doesn’t handle the monad
— the compiler warns us as Jeff described:

Couldn't match expected type “ScoreTracker [Tile]'
with actual type ~[Tile]'
In the return type of a call of “collide'
In the expression: collide (t : ts)
In an equation for slide':
slide' (t : ts)
| (null ts) || (blocking $ head ts) = collide (t : ts)

That seems pretty clear — so I have to fix it up the same way:

collide' :: [Tile] -> ScoreTracker [Tile]
collide' [] = noscore []

collide' (t : ts) | fixed t =
noscore (t : ts)

collide' (Bomb : Mountain : ts) =
noscore ([Empty, Empty] ++ ts)

collide' (Heart : House : ts) =
score ([Empty, House] ++ ts)

collide' (Ice Block : ts) | (null ts) ||
(blocking $ head ts) = noscore (Empty : ts)

collide' (t : ts) | (movable t) && ((null ts) ||
(blocking $ head ts)) = noscore (t : ts)

collide' (t : Empty : ts) | movable t
)

noscore (Empty : (slide(t : ts)))

And slide’ should call collide’ instead of collide, of course. So once this is
compiled and loaded into GHCI, we can play with it and compare it to the
original collide:

*Main> :t collide'
collide' :: [Tile] -> ScoreTracker [Tile]

36

*Main> :t collide

collide :: [Tile]l -> [Tilel
*Main> collide [Bomb, Mountain]
(Empty,Empty]

*Main> collide [Heart, House]
[Empty,House]

*Main> collide' [Heart, House]

:23:1:
No instance for (Show (ScoreTracker [Tilel]))
arising from a use of “print'
Possible fix:
add an instance declaration for (Show (ScoreTracker [Tile]))
In a stmt of an interactive GHCi command: print it

Er, yeah. The result is not printable, but can we see its type?

*Main> :t (collide' [Heart, House])
(collide' [Heart, House]) :: ScoreTracker [Tile]

In fact, we can. So there might be an easy way to make the monadic type
printable — deriving (Show) doesn’t work — but first, how do we extract the
values? Well, we get back the return value of the whole chain from runWriter:

*Main> runWriter $ collide' [Heart, Housel
([Empty,House] ,Sum {getSum = 13})

What’s the type? It’s just a tuple:

*Main> :t (runWriter $ collide' [Heart, House])

(runWriter $ collide' [Heart, House]) :: ([Tile], Sum Int)
*Main> fst $ runWriter $ collide' [Heart, House]
[Empty,House]

*Main> snd $ runWriter $ collide' [Heart, House]

Sum {getSum = 1}

Anyway, I think my mind is blown enough for today. I'm going to stop there. Jeff
has made some other modifications to my code here and there — modifications
that improve the clarity — but I'll have to get back to those. I'm off to read the
monad tutorials again, and maybe understand them better this time!
Day 5 and a Half: Refactoring with a Monad Comments
Blogger reader Jeff Licquia wrote:

Good luck with the job search. I hope something pans out soon.

It occurs to me that I was a bit too clever in my code. When people

talk about the Maybe monad, they usually talk about Maybe a,
where a is something else. Writer is like that, but it takes two things:

37

type

the monoid, and the “something else” like what Maybe takes. So,
defining ScoreTracker might make more sense defined like this:

ScoreTracker a = Writer (Sum Int) a

That corresponds more closely to the Maybe a stuff that other
tutorials talk about.

I think you got there eventually, but it’s worth keeping consistent,
and maybe someone else won’t make the leap.

Ultimately, I think using runWriter is the best way to get the result
at the ghci command line. In theory, we could use “instance” syntax
to make ScoreTracker an instance of Show, but I couldn’t get it
to work, and for just doodling at the command line the runWriter
form works fine.

I'm actually teaching myself the State monad now. It’s got its own
level of weird beyond all the monadic goodness. I think we can make
Writer work for the heart counter, too, but you mentioning “state”
made me think of how to do this with the State monad. But that
just makes my brain hurt, so we’ll skip it for now. :-)

I replied:

Jeff, State was the first one I tried to understand after how to
use the basic IO monad, and I had a lot of trouble. This one
seems easier! I am going over functors and monoids in Learn You
a Haskell. 'm thinking about tricks that would show the progress
of the ScoreTracker better on the command line. Please keep
me posted with what you learn about State. I'm getting there —
being able to just about understand how Writer works was very
encouraging!

Blogger reader Matt Walton wrote:

I always felt the State monad was a bit like cheating. “Oh we’re
in a language that doesn’t have mutable state, so let’s just pretend
that we have it.” You might as well run in IO and use actual mu-
tables, says the part of my brain that conveniently ignores the real
differences between pure monads and actual effects for the sake of
being able to make dramatic statements.

I never figured out Writer, but that was probably because I didn’t
need to.

The last serious thing I wrote that used State was for my BSc disser-

tation, and State seemed highly appropriate at the time, because I
was writing a compiler, and needed to carry a symbol table and other

38

such information around, and State made that very convenient.

Thus, one then presumes that using State to model, well, game state,
makes a lot of sense at some level, even if it’s not perhaps the most...
hmm... Haskelly thing to do. Whatever ‘Haskelly” means.

Day 5 and Three-quarters: a Bug Fix and liftM

Jeff Licquia has been playing further with the code and so have 1. He discovered
a bug in the version I posted in yesterday’s installment (my bad). In slide’ I
neglected to call slide’ in the recursive version of slide’ but called the existing
non-monadic slide. In other words, I had:

slide' (t : Empty : ts) =
noscore (Empty : (slide (t : ts)))

The problem here is that we’ll add nothing to the accumulated score, and proceed
into a chain of function invocations that handle ordinary lists. So the score
increase that should happen at that point never happens:

*Main> runWriter $ collide' [Heart, Housel
([Empty,House] ,Sum {getSum = 1})

*Main> runWriter $ collide' [Heart, Empty, House]
([Empty,Empty,House] ,Sum {getSum = 0})

Oops. Yeah, that’s a bug. Note that the compiler can’t catch this because it’s
doing what I've asked; there are not actually any type conflicts. The monadic
slide’ returns the type it is supposed to return, but in building up the “payload,”
the [Tile] part of ScoreTracker [Tile], the code fails to continue to build
up the state. Let this be a lesson to me — leaving around the previous version
of a function, when I'm testing a new one can be hazardous!

So, we can just fix that by calling slide’, right?

slide' (t : Empty : ts) =
noscore (Empty : (slide' (t : ts)))

Um, not so much:

arctic-slide.hs:52:49:
Couldn't match expected type ~[Tile]'
with actual type “ScoreTracker [Tile]'
In the return type of a call of slide'
In the second argument of ~(:)', namely ~(slide' (¢t : ts))'
In the first argument of “noscore', namely
“(Empty : (slide' (t : ts)))'

Oh... yeah. There’s that. We want to continue building up the monadic version
of the list, but the () just takes a regular list. Now it’s all complicated! But

39

really there’s a simple solution. I'll quote Jeff for a while, since he explained it
so well to me. I have not quoted his code ezactly, but the ideas are the same:

...the straightforward fix fails, because slide’ returns a ScoreTracker,
not a [Tile]. So the fix is a little more complicated. Since slide’
returns pretty much exactly what we need, we can start with just
that:

slide' (t : Empty : ts) = slide' (t : ts)

That’s not quite right; we just dropped a tile. To get it back,
remember that everything is a function, including the : operator
[and so it is easily composed with other functions — PRPJ. That
means we can create a function that prepends an Empty element to
a list...

prefix_empty :: [Tile] -> [Tile]
prefix_empty ts = Empty : ts

So why would we do this? Because we need to take ScoreTracker
into account. Here Haskell provides a function called lift M, which
takes a normal function and “lifts” it into a monad. So:

prefix_empty_st :: ScoreTracker [Tile] -> ScoreTracker [Tile]
prefix_empty_st = 1iftM prefix_empty

will give us a function with the type ScoreTracker [Tile | ->
ScoreTracker [Tile], which is what we want. (Technically, that’s
not true; it gives us Monad m => m [Tile] -> m [Tile].
But that’s just a generic version of what we want, which works with
ScoreTracker, Maybe, or lots of other monads).

So now we have this:
slide' (t : Empty : ts) = prefix_empty_st $ slide' (t : ts)

Which doesn’t use score or noscore — it just builds up the list, still in a
monadic context, preserving whatever score changes might be applied by the
function invocations it makes. And actually since we’re not going to use the
prefix functions elsewhere, they don’t really earn their keep, and we can just
write:

slide' (t : Empty : ts) = liftM (Empty :) $ slide' (t : ts)

Note the partial application of (:) by binding it to only one parameter before
we pass it to liftM — we’re creating a new version of (:) that only takes one
argument instead of two.

Jeff went on to identify a second bug, basically caused by the same problem in a
collide’ function also calling slide instead of slide’. A quick fix is to make that
collide’ function look like the slide’ function we just fixed. But then, why not
define one in terms of the other?

40

collide' (t : Empty : ts) | movable t =
slide' (t : Empty : ts)

Let’s go back a bit and reconsider — when I was using a special value for Edge,
the logic for slide and collide was considerably simpler (although it did not
work right). Here it is today:

slide' :: [Tile] -> ScoreTracker [Tile]
slide' (Ice_Block : ts) | (null ts) ||
(blocking $ head ts) = noscore (Ice_Block : ts)
slide' (t : Empty : ts) =
1iftM (Empty :) $§ slide' (t : ts)
slide' (t : ts) | (null ts) || (blocking $ head ts) =
collide' (t : ts)

collide' :: [Tile] -> ScoreTracker [Tile 1]
collide' [] = noscore []
collide' (t : ts) | fixed t = noscore (t : ts)
collide' (Bomb : Mountain : ts) =
noscore ([Empty, Empty] ++ ts)
collide' (Heart : House : ts) =
score ([Empty, House] ++ ts)
collide' (Ice Block : ts) | (null ts) ||
(blocking $ head ts) = noscore (Empty : ts)
collide' (t : ts) | (movable t) && ((null ts) ||
(blocking $ head ts)) = noscore (t : ts)
collide' (t : Empty : ts) | movable t =
slide' (t : Empty : ts)

Erm. I’d no longer call that elegant, beautiful code. For one thing, I have to
wrap it brutally to fit into my Blogger text window. That’s not just annoying
when dealing with Blogger — it suggests that the lines are too long for easy
reading even if they aren’t wrapped. And here’s what Jeff’s version looks like
today — he’s implemented his own way to structure the code with guards:

slide :: [Tile] -> ScoreTracker [Tile]
slide [] = noscore []
slide (t1 : t2 : ts)
| t1 == Ice_Block && blocking t2 = noscore (tl : t2 : ts)
| blocking t2 = collide (t1 : t2 : ts)
| otherwise = do
ts' <- slide (t1 : ts)
return (Empty : ts')
slide (t : ts)
| t == Ice_Block = noscore (t : ts)
| otherwise = collide (t : ts)

collide :: [Tile] -> ScoreTracker [Tile]

41

collide [] = noscore []

collide (t1 : t2 : ts)

| (t1, t2) == (Bomb, Mountain) =
noscore (Empty : Empty : ts)
| (t1, t2) == (Heart, House) =

score (Empty : House : ts)
| t1 == Ice_Block && blocking t2
noscore (Empty : t2 : ts)
| movable tl1 && blocking t2 =
noscore (tl : t2 : ts)
| movable t1 = do
ts' <- slide (t1 : ts)
return (Empty : ts')
| otherwise = noscore (t1 : t2 : ts)

collide (t : ts)
| t == Ice_Block = noscore (Empty : ts)
| otherwise = noscore (t : ts)

And I like that — using the separate functions for both slide and collide only
to handle the structurally different versions — empty list, list with at least
two items, list with at least one item — and the guards to handle when we differ
by value. It is, I think, more readable than mine. I was a little freaked out by
the use of do and <- in the middle of a function outside of main, but I'll think
on that some more. I have not quite satisfied myself that it is perfectly correct,
but then, I haven’t really convinced myself that mine is correct either. So I have
more to do on that front!

Day 5 and Three-quarters: a Bug Fix and lift M Comments
Blogger reader Jeff Licquia wrote:

Yup, the do notation takes some getting used to. It’s unfortunate
that you have to learn it right away just to get things done, because
it’s easy to get the concepts wrong in the beginning and then have
to “unlearn” them.

We can convert those out of do notation. The first block in slide
would look like this:

| otherwise = slide (t1 : ts) >>= \ts' -> return (Empty : ts')
Or, we could do this:
| otherwise = 1iftM (Empty :) $ slide (t1 : ts)

42

Look familiar? :-)

The first form is a direct translation from the do block, just how it’s
implemented internally. Thinking about how that works is a good
way to start breaking out of the “do notation is for IO and main”
rut. In particular, the idea that:

do
x <- foo
bar x

is just another way to say:

foo >>= \x —>
bar x

Essentially, that <- is creating a little anonymous function to be
inserted into the chain of binds. Even though it looks like variable
assignment in other languages, it’s not.

Day 6: Towards a GUI

So, I have some time today to program and I want to see how far I can get in
starting to develop a GUI for my game, incomplete as it is. Can I get a window
displayed and reacting to mouse or keyboard events, and drive the game logic
with it?

I came across the paper FranTk — A Declarative GUI Language for Haskell
(PDF file link) by Meurig Sage and it looked interesting, so I considered trying
FranTk. However, that led to broken links. Moving on...

Let’s see if I can get somewhere with FG. That needs gtk2hs. Hmmm... cabal
update, cabal install gtk2hs-buildtools, cabal install gtk.

[1 of 2] Compiling Gtk2HsSetup
(Gtk2HsSetup.hs, dist/setup-wrapper/Gtk2HsSetup.o)
[2 of 2] Compiling Main
(SetupMain.hs, dist/setup-wrapper/Main.o)
Linking dist/setup-wrapper/setup ...
Configuring cairo-0.12.4...
setup: The program pkg-config version >=0.9.0 is required but it
could not be found.
Failed to install cairo-0.12.4

I tried downloading pkg-config-0.28 source from here and that got me as far as
running ./configure —prefix=/usr/local/ and seeing:

configure: error: Either a previously installed
pkg-config or "glib-2.0 >= 2.16" could not be found.

43

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.8446&rep=rep1&type=pdf
http://pkgconfig.freedesktop.org/releases/

Please set GLIB_CFLAGS and GLIB_LIBS to the correct
values or pass --with-internal-glib to configure to use
the bundled copy.

So I tried ./configure —prefix=/usr/local/ —with-internal-glib and that
seemed to go OK; I was able to do make, make check — one failure out of 25
tests in “check-path” — and sudo make install. Back to cabal install gtk
and... nope.

Configuring cairo-0.12.4...

setup: The pkg-config package cairo-pdf is required but it
could not be found.

Failed to install cairo-0.12.4

Configuring glib-0.12.4...

setup: The pkg-config package glib-2.0 is required but it

could not be found.

Failed to install glib-0.12.4

cabal: Error: some packages failed to install:

cairo-0.12.4 failed during the configure step. The exception was:
ExitFailure 1

gio-0.12.4 depends on glib-0.12.4 which failed to install.
glib-0.12.4 failed during the configure step. The exception was:
ExitFailure 1

gtk-0.12.4 depends on glib-0.12.4 which failed to install.
pango-0.12.4 depends on glib-0.12.4 which failed to install.

OK... so I guess it’s time to install MacPorts because the Cairo page suggests
using it to install cairo. I know there are competing tools — fink and Homebrew
and I’ve used both of them at some point, years ago, but removed them, for
reasons I can no longer remember... I think it had something to do with the
way they insisted on installing things under /opt and it was clear to me if they
would interfere with each other. But anyway, I'll try the MacPorts installer
for 2.13 for Mountain Lion... and then sudo port install cairo.. oh, wow, it’s
installing the universe... bzip2, zlib, libpng, freetype, perl5, python27... oh,
the humanity...

OK, where are we... oh, cabal install gtk again. “The pkg-config package
cairo-pdif is required but it could not be found.” Let’s try glib again.

Pauls-Mac-Pro:Gitit Wiki paul$ sudo port install glib2
---> Computing dependencies for glib2

---> C(Cleaning glib2

---> Scanning binaries for linking errors: 100.0%
---> No broken files found.

But cabal install gtk is still broken. Is there a MacPorts version of gtk2? Yes,
apparently OH GOD IT’S BUILDING THE WHOLE WORLD...

44

(Musical interlude...)

But then cabal install gtk seems to go OK. A lot of deprecated function
warnings. Another twenty minutes go by.. what was I doing again? You know,
I'm getting all confused, why don’t I start with gtk2hs because Real World
Haskell uses it.. I need to sudo port install glade3.. and OH GOD IT’S
BUILDING THE WHOLE WORLD AGAIN... aaand welcome to hour three of
“The Polar Game in Haskell, Day 6: Towards a GUI...”

OK, glade and glade3 don’t have any executables in my path. Oh, it’s glade-3,
how silly of me, even though the port is called glade3. And it says Gtk-
WARNING **: cannot open display:. Oh yeah, it’s X-Windows JUST
SHOOT ME IN THE GODDAMN FACE... oh, I mean now I will happily go
down another rabbit hole, thank you sir may I have another? So... the older X
server is not supported in Mountain Lion anymore but there’s something called
XQuartz. XQuartz-2.7.4.dmg... “you need to log out and log back in to make
XQuartz your default X11 server.” Oh, thanks, I'll just close these FOURTEEN
browser tabs, SEVEN bash terminal sessions, and other apps... you know, it’s
time for a food break anyway...

..aaand we’re back. It launches, but I get “an error occurred while loading or
saving configuration information for glade-3. Some of your configuration settings
may not work properly.” There’s a “Details” button:

Failed to contact configuration server; the most common

cause is a missing or misconfigured D-Bus session bus daemon.

See http://projects.gnome.org/gconf/ for information. (Details -
1: Failed to get connection to session: Session D-Bus not running.
Try running “launchctl load -w
/Library/LaunchAgents/org.freedesktop.dbus-session.plist'.)
Failed to contact configuration server; the most common cause

is a missing or misconfigured D-Bus session bus daemon. See
http://projects.gnome.org/gconf/ for information. (Details -

1: Failed to get connection to session: Session D-Bus not running.
Try running “launchctl load -w
/Library/LaunchAgents/org.freedesktop.dbus-session.plist'.)
Failed to contact configuration server; the most common cause

is a missing or misconfigured D-Bus session bus daemon. See
http://projects.gnome.org/gconf/ for information. (Details -

1: Failed to get connection to session: Session D-Bus not running.
Try running “launchctl load -w
/Library/LaunchAgents/org.freedesktop.dbus-session.plist'.)
Failed to contact configuration server; the most common cause

is a missing or misconfigured D-Bus session bus daemon. See
http://projects.gnome.org/gconf/ for information. (Details -

1: Failed to get connection to session: Session D-Bus not running.
Try running “launchctl load -w
/Library/LaunchAgents/org.freedesktop.dbus-session.plist'.)

45

Failed to contact configuration server; the most common cause

is a missing or misconfigured D-Bus session bus daemon. See
http://projects.gnome.org/gconf/ for information. (Details -

1: Failed to get connection to session: Session D-Bus not running.
Try running “launchctl load -w
/Library/LaunchAgents/org.freedesktop.dbus-session.plist'.)

Gaaah! Well, OK, I can do that.. and I'm able to edit a little file. Now to
look at some tutorials. T get 404s on http://www.haskell.org/gtk2hs/docs/tuto-
rial/glade/ and also http://dmwit.com/gtk2hs/%7C — ooof. My first attempt at
adapting a little code from Real World Haskell — not going so well. This tutorial
is still available: http://www.haskell.org/haskellwiki/Gtk2Hs/Tutorials/Threa
dedGUIs but as to how useful it is.. I'm gonna have to get back to you on that.
There’s also this tutorial: http://home.telfort.nl/sp969709/gtk2hs/chap2.html
so I can create a little GTK GUI entirely in code rather than using a Glade file.
Something like this:

import qualified Graphics.UI.Gtk

main :: I0 Q)

main = do
Graphics.UI.Gtk.initGUI
window <- Graphics.UI.Gtk.windowNew
Graphics.UI.Gtk.widgetShowAll window
Graphics.UI.Gtk.mainGUI

Aaand I get an immediate segmentation fault. Hmmm. I think I read about
running with “-threaded...”

Pauls-Mac-Pro:arctic-slide-haskell paul$ ghci -threaded
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :7 for help
Warning: -debug, -threaded and -ticky are ignored by GHCi

OK, how about GHC?

Pauls-Mac-Pro:arctic-slide-haskell paul$ ghc basic-gui.hs -
threaded
[1 of 1] Compiling Main (basic-gui.hs, basic-gui.o)
Linking basic-gui ...
Undefined symbols for architecture x86_64:
" _iconv", referenced from:

_hs_iconv in libHSbase-4.5.0.0.a(iconv.o0)

(maybe you meant: _hs_iconv_open,
_base_GHCziIOziEncodingziIconv_iconvEncoding6_info ,
_hs_iconv , _base_GHCziIOziEncodingzilconv_iconvEncoding4_closure , _base_GHCziIOziEncoding:
_base_GHCziIOziEncodingzilconv_iconvEncodingb_closure ,
_base_GHCziIOziEncodingzilconv_iconvEncoding6_closure ,
_base_GHCziIOziEncodingziIconv_iconvEncoding3_closure ,
_base_GHCziIOziEncodingziIconv_iconvEncoding2_closure ,

46

http://www.haskell.org/haskellwiki/Gtk2Hs/Tutorials/ThreadedGUIs
http://www.haskell.org/haskellwiki/Gtk2Hs/Tutorials/ThreadedGUIs
http://home.telfort.nl/sp969709/gtk2hs/chap2.html

_base_GHCziIOziEncodingzilconv_iconvEncoding2_info ,
_base_GHCziIOziEncodingziIconv_iconvEncoding5_info ,
_base_GHCziIOziEncodingziIconv_iconvEncoding7_closure ,
_hs_iconv_close ,
_base_GHCziIOziEncodingzilIconv_iconvEncoding7_info)

" _iconv_close", referenced from:

_hs_iconv_close in libHSbase-4.5.0.0.a(iconv.o0)

(maybe you meant: _hs_iconv_close)
_iconv_open", referenced from:

_hs_iconv_open in 1libHSbase-4.5.0.0.a(iconv.o)

(maybe you meant: _hs_iconv_open)

" locale_charset", referenced from:

_localeEncoding in libHSbase-4.5.0.0.a(PrelI0Utils.o)

1d: symbol(s) not found for architecture x86_64
collect2: 1d returned 1 exit status

Hmmm. It seems like this might take longer than I thought...

Day 6: Towards a GUI Comments

No comments were left on the Day 6: Towards a GUI post.

Day 6 and a Half: Towards a GUI, Continued

OK, so when I left off last time, I was running into a gruesome link error. I
found this Stack Overflow thread and the first accepted answer fixed the problem.
However, it seems that the answer may be to avoid MacPorts versions of the
libraries I need. So I'm going to attempt to clean that all out and use Homebrew.
So, first:

sudo port -fp uninstall --follow-dependents installed
And then I'm manually cleaning out some of the stuff mentioned in this article.

Next, I'm removing this from my .profile (hey, I'm so pleased that it is clearly
marked!

MacPorts Installer addition on 2013-07-16_at_11:57:13:
adding an appropriate PATH variable for use with MacPorts.
export PATH=/opt/local/bin:/opt/local/sbin:$PATH

Finished adapting your PATH environment variable for
use with MacPorts.

Now to install Homebrew:
ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

I ran brew doctor and wow, I have a mountain of warnings. I got rid of most
of them except for several about “unbrewed” things — static libraries, .la files,
and dylibs in /usr/local/lib. I get a warning about MacGPG2 but that seems

47

http://stackoverflow.com/questions/2726248/ghc-6-12-and-macports
http://superuser.com/questions/367434/how-do-you-remove-macports-and-all-the-packages-it-has-installed

to be fixed by upgrading to the current version. So now I'm trying cabal install
—reinstall gtk, and I get:

Configuring gtk-0.12.4...
setup: The pkg-config package gthread-2.0 is required but it could not be
found.

And so, attempting to follow the directions here:
brew install glib cairo gtk gettext fontconfig

..and that actually crashes. I get “confest cannot be opened because of a
problem.” In the console log:

Process: conftest [12844]

Path: /private/tmp/*/conftest
Identifier: conftest

Version: 0

Code Type: X86-64 (Native)

Parent Process: sh [12843]

User ID: 501

Date/Time: 2013-07-16 15:42:18.117 -0400
0S Version: Mac 0S X 10.8.4 (12E55)

Report Version: 10
Crashed Thread: O

Exception Type: EXC_BREAKPOINT (SIGTRAP)
Exception Codes: 0x0000000000000002, 0x0000000000000000

Application Specific Information:
dyld: launch, loading dependent libraries

Dyld Error Message:

Library not loaded: /usr/local/lib/libintl.8.dylib
Referenced from: /private/tmp/*/conftest
Reason: no suitable image found. Did find:
/usr/local/lib/libintl.8.dylib:

no matching architecture in universal wrapper
/usr/local/lib/libintl.8.dylib:

no matching architecture in universal wrapper

And T get an error about “GLib requires a 64 bit type.” I also had to do
some manual clean-out of some files that had the wrong permissions and were
interfering with installing pkgconfig. I found a number of people reporting this
problem, but none of the solutions they outlined seemed to work for me. So...
what else can I try?

48

http://www.haskell.org/haskellwiki/Gtk2Hs/Mac

There’s this:

http://www.haskell.org/haskellwiki/Gtk2Hs/Mac#GTK.2B_OS_X_ Framewo
rk

OK! Deep sigh... let’s try this!

Pauls-Mac-Pro:Downloads paul$ sh ./gtk-osx-build-setup.sh
Checking out jhbuild (07b5a7d) from git...

Cloning into 'jhbuild'...

remote: Counting objects: 37027, done.

remote: Compressing objects: 100% (14715/14715), done.

remote: Total 37027 (delta 28610), reused 28612 (delta 22178)
Receiving objects: 100% (37027/37027), 7.27 MiB | 2.27 MiB/s, done.
Resolving deltas: 100% (28610/28610), done.

Switched to a new branch 'stable'

Patch is empty. Was it split wrong?

If you would prefer to skip this patch, instead run "git am --
skip".

To restore the original branch and stop patching run "git am --
abort".

Installing jhbuild...

gnome-autogen.sh not available

yelp-tools not available

Configuring jhbuild without autotools

Now type "make' to compile jhbuild

Installing jhbuild configuration...

Installing gtk-osx moduleset files...

PATH does not contain /Users/paul/.local/bin, it is recommended that you add that.

Done.

Ummm... OK, wow, that installed source in my home directory build tools in
a hidden directory (prefaced with a period) under my home directory. There
are warning notes about how the build process conflicts with MacPorts and
fink. There’s also a note that says “Note: jhbuild requires Python 2.5 to
unpack tar files” (of course it does.. that’s the simplest and most system-
compatible way to unpack tar files, right?) Ugh. Anyway... in ~/Source/jhbuild
I type ~/.local/bin/jhbuild bootstrap and it builds about a bazillion things
including cmake. (Talk amongst yourselves, this is going to take a while... time
for another snack...)

That seemed to work. And so: ~/.local/bin/jhbuild build meta-gtk-osx-
bootstrap and ~/.local/bin/jhbuild build meta-gtk-osx-core. Somewhat
to my shock, everything succeeded! I tried to build gimp, but that failed with “we
require Pango with the optional support for Cairo compiled in,” and T don’t want
to go too far down that rabbit hole, so I gave up on that. So let’s see if I can make
that work with GHC. The next step is package-config. Which requires glib.

49

http://www.haskell.org/haskellwiki/Gtk2Hs/Mac#GTK.2B_OS_X_Framework
http://www.haskell.org/haskellwiki/Gtk2Hs/Mac#GTK.2B_OS_X_Framework

Ummm, wait a minute... oh, crap. That’s still broken with homebrew. Ummm.
What about _ package-confi_ g from MacPorts, which the instructions for
GTK OSX warned me about? Sure, let’s try it, what the hell... after all, I've
wasted nearly a full day already... so, sudo port selfupdate, sudo port install
pkg-config... that seemed to work. So then we download the Gtk2HS tarball...
ummm, the link from the instructions is broken. Ummm... from SourceForge
here... but that version is looking much older than the one described here. I'm
getting a bad feeling about this. But anyway... 0.10.1 it is! Configure away!

checking for pkg-config... /opt/local/bin/pkg-config
checking pkg-config is at least version 0.9.0... yes
checking for GLIB... no

configure: error:

The development files for the glib-2.x library were not found.
Perhaps you need to install glib or glib-devel

Huh. Well. It’s just about the end of my work day; I've got to go downstairs
and help my wife get dinner ready. Ummm. So! I hope you’ve enjoyed this
tutorial on how to use the GTK GUI library in Haskell! Please join me next
time when I perform brain surgery on myself using a hacksaw, a folding mirror,
and a bottle of Scotch!

In the original blog post, I included this YouTube video of Robyn Hitchcock
performing “Fiz You” live, which Blogger embedded in the blog post page. I'm
not sure how to do that in my own blog, so follow the link if you want to see
Robyn, one of my favorite musicians, who I got to see live at The Ark in Ann
Arbor in the late nineties.

Day 6 and a Half: Towards a GUI, Continued Comments
Blogger reader Jeff Licquia wrote:

Hmm...

sudo apt-get install libghc-gtk-dev
cat > test-gtk.hs

ghc test-gtk.hs

./test-gtk

And there’s a blank window on my screen.

Sorry... but it’s not often that a Linux fanboy gets to wag his finger
at Apple for not getting something right, so we have to enjoy our
moments of glory when we find them. :-)

Seriously, a few options:

- Not Haskell-specific, but of the GUI toolkits I saw with Haskell stuff,

50

http://sourceforge.net/projects/gtk2hs/
http://projects.haskell.org/gtk2hs/archives/2012/11/21/new-gtk2hs-0124-release/
https://www.youtube.com/watch?v=usAXHygEQJU
https://www.youtube.com/watch?v=usAXHygEQJU

something based on wxWidgets is likely your best bet. It will support
native Mac OS X look-n-feel, and also port easily to Windows and
Linux via GTK+. (And you can do GTK+ on Mac, but for some
reason I don’t suspect you're eager to try that option.)

- Qt would be a very close second. It’s got a proven pedigree on Mac,
too. The one drawback: things in the Qt world are in flux, which
means that slightly older Qt code may require a little attention to get
working with the latest shiny. wxWidgets is likely to have a slight
edge in that department.

- After that, Tk has a very long reputation as a cross-platform GUI
toolkit. The first GUI systems written for Python and Perl were
based on Tk. That said, the link from the Haskell wiki to HTk seems
dead, so maybe not.

- Something to consider: if you've got something like Parallels or
VMWare or VirtualBox on your Mac, the path of least resistance
might be to fire up an Ubuntu VM and do the tinkering in Linux. It
probably could have saved you time today. OTOH, you could grow a
big pain-point when it comes time to transfer your tinkerings back.

Looking back from 2025, Jeff’s suggestion to build on Linux is a good one; in
2018 I had been a Linux user for many years. I had used Qt a decade earlier,
and a few years later would use it again. In 2025, I still work primarily on
Mac and Linuz, although I use Windows laptops when required by employers. I
mainly use a Mac laptop as my daily driver and a number of Linuz boxes on my
home network, including the one I'm connected to right now, using VSCode, to
do my writing in Markdown and building my web site with a Makefile.

Blogger reader Matt Walton wrote:
It’s not really a Haskell problem, the problem is GTK on a Mac.
May I suggest wxHaskell instead? It’s based on wxWidgets which
has an OS X backend, so should be a lot easier to install. There’s also
some interesting stuff going on around it, like the reactive-banana

bindings for it that let you use FRP to wire up your Wx GUI’s
functionality.

I commented:

Thanks for reading, guys. I realize it turned out to be a pretty
useless set of blog posts. I would have preferred if I'd been able to
get something working and present a recipe for other people to follow
rather than just a story of failure!

I do have a quad-core Xeon Ubuntu box sitting here. I work on

o1

various platforms including Windows (when I have to). The main
thing that keeps me from firing it up is that we are having a heat
wave and my office is in a half-attic. The idea of firing up another
computer in here fills me with dread. I fried one mobo [motherboard]
last summer even with an air conditioner in here and I'm not eager
to fry another. But I'm glad to hear it is maintained well enough to
work pretty effortlessly on Linux. I'm not sure just what the issue is
with the Mac libraries but it seems like it is affecting more than just
this. It certainly could be because I have tinkered with this system
quite a bit and built a lot of things from scratch. But judging from
various comments on message boards out there, I suspect it is not.

I will give wxWindows a shot and see how far I can get with that. I
don’t remember it fondly from attempting to write a cross-platform
GUI a decade ago — the code was pretty ugly then and I had to bail
out and use Qt instead — but most likely it has improved.

Then later, I added:

Just FYI, wxHaskell is working for me, at least for the most basic
Hello World app. So maybe I'll have some more significant progress
to report soon!

Day 7: Towards a GUI, Continued

So, trying wxHaskell. First, I want to try removing everything that might be
left over from yesterday’s experiments:

Pauls-Mac-Pro:~ paul$ brew list
gettext 1ibffi pkg-config xz
Pauls-Mac-Pro:~ paul$ brew uninstall gettext libffi pkg-config xz
Uninstalling /usr/local/Cellar/gettext/0.18.3...
Uninstalling /usr/local/Cellar/libffi/3.0.13...
Uninstalling /usr/local/Cellar/pkg-config/0.28...
Uninstalling /usr/local/Cellar/xz/5.0.5...
Pauls-Mac-Pro:~ paul$ port installed
The following ports are currently installed:
libiconv @1.14_0 (active)
pkgconfig @0.28_0 (active)
Pauls-Mac-Pro:~ paul$ sudo port uninstall pkgconfig libiconv
---> Deactivating pkgconfig @0.28_0
---> C(Cleaning pkgconfig
--—> Uninstalling pkgconfig ©0.28_0
---> C(Cleaning pkgconfig
---> Deactivating libiconv @1.14_0
---> Cleaning libiconv

92

---> Uninstalling libiconv ©1.14_0
--—> Cleaning libiconv

Then install wxmac: I'm attempting the directions here.
brew install wxmac —use-llvin —devel

brew install wxmac --devel

Warning: It appears you have MacPorts or Fink installed.

Software installed with other package managers causes known problems
for Homebrew. If a formula fails to build, uninstall MacPorts/Fink
and try again.

There shouldn’t be any libraries or binaries in the various paths to interfere, so
I’ll ignore this.

And, it seemed to succeed. So, next step from the instructions above: check
your path to make sure you are using your wxWidgets and not the default
Mac one. The command which wx-config should not return the file path
/usr/bin/wx-config (On my system it returns /usr/local/bin/wx-config).
Next, cabal install wx cabal-macosx. That chugs away for a while and I see
an unnervingly large number of warnings, but it builds. And then, I saved this
file as hello-ex.hs and ghc —make HelloWorld.hs and macosx-app hello-wx
and ./hello-wx.app/Contents/MacOS /hello-wx and the result runs and I
get a window, although it pops up off the bottom of my primary display, and
the application’s main menu does not seem to render its menu items quite right
(they say “Hide H” and “Quit H” instead of the application name). But still —
promising!

So — some code. To facilitate working with a GUI module in a separate .hs file
I am now calling the core logic ArcticSlideCore.hs. and that file begins with
module ArcticSlideCore where. I don’t have very much working yet, but
here’s what is in my ArcticSlideGui.hs file so far. First I define my module
and do my imports:

module Main where
import Graphics.UI.WX
import ArcticSlideCore

Then I define some bitmaps. For purposes of experimentation I made .png files
out of the original Polar game’s CICN resources. I want to redraw them — first,
to avoid blatant copyright infringement and second, to make them bigger. But
temporarily, I’ll just use the originals:

bomb = bitmap "bomb.png"
heart = bitmap "heart.png"
house = bitmap "house.png"
ice = bitmap "ice_block.png"
tree = bitmap "tree.png"

93

http://www.haskell.org/haskellwiki/WxHaskell/MacOS_X
https://raw.github.com/jodonoghue/wxHaskell/master/samples/wxcore/HelloWorld.hs
https://raw.github.com/jodonoghue/wxHaskell/master/samples/wxcore/HelloWorld.hs

While they are not game tiles as such, there are icons for the penguin facing in
the four cardinal directions and icons for a breaking ice block and exploding
bomb that were used in original animations, so I have borrowed those:

penguin_e = bitmap "penguin_east.png"
penguin_s = bitmap "penguin_south.png"
penguin_w = bitmap "penguin_west.png"
penguin_n = bitmap "penguin_north.png"

ice_break = bitmap "ice_block_breaking.png"
bomb_explode = bitmap "bomb_exploding.png"

I noticed that wxHaskell’s Point type operates in reverse. I'm accustomed to C
arrays where the higher-rank indices come first (so y, x or row index, column
index for tile positions), but points are backwards. My icons are 24x24 pixels,
so I rearrange and scale them like so:

posToPoint :: Pos -> Point
posToPoint pos = (Point (posX pos * 24) (posY pos * 24))

Now, some convenience function for drawing bitmaps based on Tile type or
based on a wxHaskell bitmap. These are two more cases where I was not sure of
the type signature, so I wrote the functions without them:

drawBmp dc bmp pos = drawBitmap dc bmp point True []
where point = posToPoint pos

drawTile dc tile pos = drawBmp dc bmp pos
where bmp = case tile of Bomb -> bomb
Heart -> heart
House -> house

Ice -> ice

Tree -> tree

GHCIT says:

Prelude Main> :t drawBmp
drawBmp
:: Graphics.UI.WXCore.WxcClassTypes.DC a
-> Graphics.UI.WXCore.WxcClassTypes.Bitmap ()
-> ArcticSlideCore.Pos
-> 10 O

That boils down to drawBmp :: DC a -> Bitmap () -> Pos -> I0 (), and
the signature for DrawTile similarly boils down to drawTile :: DC a -> Tile
-> Pos -> 10 (). Thanks, GHCI!

Next, I need a view method. This is just a placeholder test to verify that I can
draw all my icons in the bounds where I expect them:

94

draw dc view
= do

drawTile dc Bomb (Pos 00)
drawTile dc Heart (Pos 01)
drawTile dc House (Pos 02)
drawTile dc Ice (Pos 03)
drawTile dc Tree (Pos 04)
drawBmp dc penguin_e (Pos 10)
drawBmp dc penguin_s (Pos 11)
drawBmp dc penguin_w (Pos 12)
drawBmp dc penguin_n (Pos 13)
drawBmp dc ice_break (Pos 0 23)
drawBmp dc bomb_explode (Pos 3 23)

Now, my gui function is where things get interesting and wxHaskell shows off a
little. I read this paper that talks about some of the layout options and other
tricks of the wxHaskell implementation, and discovered that this maps really
nicely to defining my window in terms of a grid of icons. space 24 24 returns a
layout item of the appropriate size, and grid returns a layout item when given
spacing values (I want the icons touching, so I use 0 0) and a list of lists for rows
and columns. To generate the proper structure of 4 rows of 24 columns I just
take what I need from infinite lists: take 4 $ repeat $ take 24 $ repeat $
space 24 24 Oh, that’s nifty!

gui :: I0 O
gui
= do f <- frame [text := "Arctic Slide"]
t <- timer f [interval := 250

]
set £ [layout

grid 0 0 $ take 4 $ repeat $
take 24 $ repeat $ space 24 24

,bgcolor := white
,on paint := draw
]
return ()

And finally, main:
main :: I0 ()
main

= start gui

To build this for use as a MacOS X GUI app I just do ghc —make ./arctic-
SlideGui.hs, and if it compiles properly then macosx-app arcticSlideGui;
./arcticSlideGui.app/Contents/MacOS /arcticSlideGui and I have a little
GUI window:

Sweet! Now I've got some more thinking to do. There’s some plumbing that
needs to get hooked up between the core game logic and the GUI layer. The

99

http://legacy.cs.uu.nl/daan/download/papers/wxhaskell.pdf

8ada”
¥

Figure 3: “Polar GUI Window”

core game logic is mostly factored the way I want it to be — it gets a world
and a penguin move and returns an updated world — but I need to do a little
more than just map the tiles to a series of drawTile calls. I might want to
support timed sequences of changes to the GUI representation of the board —
for example, smooth sliding of game pieces and smooth walking of the penguin.
The draw method should draw the board pieces and the penguin all at once,
with no redundancy if possible. Sound effects would be nice. Animation for
crushing an ice block and blowing up a mountain would be nice. I've got some
ideas along these lines based on event queues and a timer, and some other pieces
of sample code I've been looking at.

Meanwhile, if any of you would like to take a crack at redrawing the graphics,
please be my guest. It would be nice if the replacement icons would fit on an
iPhone or iPod Touch. 48x84 is just a little bit too big — 48 pixels by 24 icons is
1152 pixels, and the iPhone 4 and 5 screens are 640x960 and 640x1136. 40 pixels
wide would fit perfectly on an iPhone 4. Note that the icons don’t actually have
to be square — there is room to spare vertically. It might be nice, though, to
leave room for a few extra rows, to support game boards that break out of the
original 4-row height.

Day 7: Towards a GUI, Continued Comments

Blogger reader Jeff Licquia wrote:
Excellent!
Meanwhile, I need to push my refactor of scoring and penguin move-
ment tracking that uses the State monad, so you can see if you prefer
it to the current Writer monad logic. The nice thing is that we can
add more state variables easily (like the heart counter you were talk-
ing about earlier). Plus, I think I did something... not wrong, really,

but not quite right, either, when doing the Writer implementation,
and I think the State version is actually more clear.

Blogger reader Matt Walton wrote:

Brilliant! Glad to see some success in getting the GUI up and running.

96

I'm interested in the animations, because in my limited experience
that kind of thing’s a pain no matter what language you’re working in.
At least in Haskell you should be able to build a decent abstraction
for it if you can’t find one.

And, sadly, that was the end.

I'm not quite sure what happened next in 2013. It’s been a minute, and if I have
more notes, I'm not sure where they are. But it doesn’t look like I did much
more with Haskell at that time. I was looking for a job, so probably got busy with
job search stuff again.

I did, fortunately, wind up getting work again soon, a contract job testing a
medical device, that required some travel to Fort Wayne, Indiana but allowed me
to work mostly from home, which at the time was in Saginaw, Michigan.

As I write this in 2025, from Pittsfield Township, Michigan, I am unemployed
again; most recently, I was working remotely with a virtual platform team at
Boeing, as a contractor, and was laid off with all the rest of the team’s contractors
last October as the company cut costs in response to the Boeing machinist’s
strike.

As I look for work in 2025 I am attempting to improve my online portfolio,
and editing this content and migrating it from Blogger to my personal web site
represents a small piece of that.

I'm also looking into languages I might like to work with in the future, including
Zig and OCaml. Although I find Haskell fascinating, and feel that using it has
taught me a lot, I can’t shake the feeling that Haskell, a language designed to be
all things to all people — as long as those people are Ph.D. computer scientists
with a working knowledge of category theory who want to write Haskell code
for their dissertation projects — is never really going to be my jam; maybe I'd
rather work with languages that take the best parts of Haskell and make them
more simple and practical to use for systems and application programmers, the
same way that Dylan took some of the best parts of Common Lisp and made
them more accessible. What is that language in 2025, that supports the advanced
programming idioms that I love, and that I can also get paid to write? I still
don’t know.

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

o7

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	My Code
	Introductory Notes about Polar
	Day 1
	Day 1 Comments

	Day 2
	Day 2 Comments

	Day 3
	Day 3 Comments

	Day 4
	Day 4 Comments

	Day 4 and a Half: Folding a Penguin
	Day 4 and a Half Comments

	Day 5: Array v. List
	Day 5: Array v. List Comments

	Day 5 and a Half: Refactoring with a Monad
	Day 5 and a Half: Refactoring with a Monad Comments

	Day 5 and Three-quarters: a Bug Fix and liftM
	Day 5 and Three-quarters: a Bug Fix and liftM Comments

	Day 6: Towards a GUI
	Day 6: Towards a GUI Comments

	Day 6 and a Half: Towards a GUI, Continued
	Day 6 and a Half: Towards a GUI, Continued Comments

	Day 7: Towards a GUI, Continued
	Day 7: Towards a GUI, Continued Comments

