Talking Back to HyperCard Revisited

Paul R. Potts

March 2025

In April 1989 my article, Understanding Lightspeed C: Talking Back to Hyper-
Card was published in Washington Apple Pi Journal. See the text and code in
Talking Back to HyperCard. In 2025, I revised the code to make it more readable,
and created a simple HyperCard demonstration stack to run it. The updated code
and stack are available for download. See the links at the end of the article.

About graphPack

The graphPack XCMD adds graph-drawing commands to HyperCard. I origi-
nally developed this code to support my work on an instructional stack called
LimCon, for teaching calculus limits and continuity. If you’d like to read
more about LimCon and how it uses XCMDs, see my article Retrospective: the
LimCon HyperCard Stack.

For the 1989 article, I created a stripped-down version of graphPack designed
to demonstrate in “bare-bones” form the use of an XCMD to manage an external
window. This stripped-down graphPack is the subject of both the original
article and this article.

Please note that, as I discuss in the Retrospective on LimCon, the XCMD I
describe cannot be used to create and manage a Macintosh window that can be
dragged around the screen like other windows. The window will not respond
to the events that the Macintosh toolbox normally sends to trigger windows to
redraw their content as needed. These limitations were not deal-breakers for the
original LimCon project 35 years ago, which ran on Macintosh II systems with
640x480 displays.

HyperCard 2.0 introduced additional support for XCMDs which managed win-
dows, but I wasn’t working with graphPack any more by that point, so I never
attempted to migrate the original XCMD to use the new functionality. That is,
as they say, an opportunity for future research!

Revisiting graphPack

For anyone who would like to build and run this code, note that I am using
Basilisk IT on a MacBook Air M2 running System 7.5.3, HyperCard 2.4.1, THINK

Talking_Back_to_HyperCard.html
./Retrospective__The_LimCon_HyperCard_Stack.html
./Retrospective__The_LimCon_HyperCard_Stack.html

C 5.0.2 and 6.0.1, and MPW 3.2.3. I originally used earlier versions of these
tools during the years 1988 to 1990 when I developed this code, but I don’t have
a good record of exactly which versions I used. I chose these versions because 1
was able to get them to work under emulation in 2025.

I have included both THINK C 5 and THINK C 6 project files. Both seem to
work for me fine and produce identical code. I have also included an MPW
Makefile.

In modernizing this code, I first made a number of minor changes to get my orig-
inal code building. Specifically, there were changes between versions of THINK
C involving the definitions of types like Str31. When I tried it with MPW, 1
realized I had to stop relying on the automatic inclusion of <MacTypes.h>
that THINK C does by default, and instead added the individual Mac headers
as needed.

In addition to the changes needed to get it to build, I made the following changes:

Formatting

I originally wrote the code on a compact Mac (with a 9-inch, 512 pixel by 384
pixel screen), which encouraged me to make the source code itself as compact as
possible, leaving out whitespace, especially vertical whitespace. I was very sparing
with comments inside functions. I even left out spaces between parameters. When
I submitted the code to the Washington Apple Pi Journal, I squeezed it down
even further to fit the narrow magazine column width, destroying my indentation
scheme.

In 2025 I have much more screen real estate to work with, so I reformatted the
code for greater readability, limiting myself to a relatively luxurious 75-character
maximum line length. I also switched from tabs to spaces, and used BBEdit to
clean up trailing whitespace and other issues that are invisible in the THINK C
editor, but easily visible using BBEdit’s “Show Invisibles” view option.

Modernizing the C Code

While I was at it, I got rid of the old K&R style function definitions in favor of
the standard C practice of including types in parameter lists.

I also factored out some small helper functions, and got rid of some unnecessary
allocation of pointers and handles by using some local buffers for working with
temporary strings.

Note that after rebuilding with THINK C 5, the XCMD resource is now 1302
bytes instead of the original 8810 bytes. That’s a pretty dramatic improvement!
Some of the savings is due to refactoring to reduce duplicated lines of code, but
most of the reduction happened simply because I rebuilt the code with THINK
C 5. I think this must be due to improvements to the linker, which seems to be
better at stripping out unused code, compared to older versions of THINK C.

The New graphPackStack

As part of my effort to test the graphPack XCMD, I created a new HyperCard
XCMD called graphPackStack. It’s not pretty, but here’s what it looks like:

graphPackStack

[Make lllindow)

(Make Line)

(Clean lllindow)

(Trash lllindnw)

Figure 1: “The graphPack Stack”

In the original article, my explanation for how to set up the resources needed
by graphPack was extremely short, as I was trying to hit a strict word count
limit. Here is how I set up the resources in this new HyperCard stack, in more
detail. Here’s a screen shot of ResEdit showing all the windows:

You will need:

e a PICT resource. This is used to create the window. I used a background
image showing an Cartesian coordinate plane. I used resource ID 1, but
you can use any resource 1D.

e an STR resource. This contains a string that holds the name of the
HyperTalk global variable that the XCMD should use to store a pointer to
the active window. In this case, it is myWindowsLoc. This must match
the global definition in the HyperTalk code in the stack! The resource 1D
must be 100, as the graphPack C code always uses 100.

e the XCMD code resource itself. I copied this from the resource file generated
by THINK C and pasted it into the stack. It should be called graphPack.
The ID is not important, as HyperCard will find the code resource by
name, but I used 160.

roe

& File Edit Resource Window 113eM 2 Y T

test_graphPack_s

w] #

PICTs from test_graphPack_stack

Info for PICT 1 from test_graphPack_stach

Type: PICT Size: 3981

Name: |graph background 1

Owner type

€

Owner 1D:

Attributes:
[OSystem Heap [JLocked OPreload
OPurgeable [JProtected []Compressed

STRs from test_graphPack.
[y Name
100

Size Info for STR_100 from test_graphPack_sta

12

Type: STR Size: 12

STR_1D = 100 from test_graphPack_stack 10: [lo0]
The String [Mylindouloc ame:
Owner type

Owner 1D:
Sub 1D:

Attributes:
[JSystem Heap []JLocked [Preload
[J Purgeable [JProtected []Compressed

Info for HCMD 160 from test_graphPack_s

HCMDs from test_graphPack

'y Size Name Type: HCMD Size: 1468
160 1468 graphPack” 1D: oo ||
Name: [graphPack

Owner type

Attributes:
[System Heap [JLocked O Preload
[Purgeable [Protected [J compressed

Figure 2: “The graphPack Stack Resources”

The HyperTalk Scripts

A note on testing: these scripts don’t do error-checking, and neither does this
stripped-down version of graphPack. In particular, if you try to use the “Make
Window” or “Clean Window” buttons when the window has never been created,
or after it has been destroyed with “Trash Window,” you will probably crash
your emulated Macintosh computer, so be cautious. I recommend making regular
backups of the disk image file you are using with the emulator, since sometimes,
if Basilisk II crashes, it will make the disk image un-bootable.

The Stack Script

The stack script must contain the definition of the global myWindowLoc. This
just looks like:

global myWindowLoc

The “Make Window” Button Script
The “Make Window” button has this script:

on mouseUp
-- makeWindow command with PICT resource ID 1
graphPack 1, 1

end mouseUp

The first 1 parameter selects the makeWindow command and the second indicates
the resource ID of the PICT resource that the code will load to create the window.
If T hit command-M to open up HyperCard’s message box, and type in “hide
menuBar,” and hit the “Make Window” button, I see the window pop up:

Note that I mentioned hiding the menu bar, because if I didn’t, the window
would be drawn partly underneath the menu bar. This is because its position
was originally hard-coded for use with a particular HyperCard stack designed to
run full-screen. To get an idea of what I designed the full version of graphPack
to do, see Retrospective: The LimCon HyperCard Stack.

The “Trash Window” Button Script

I can dispose of the window using the “Trash Window” button. Its script looks
like this:

on mouseUp
-— trashWindow command - this command accepts no parameters
graphPack 9

end mouseUp

./Retrospective__The_LimCon_HyperCard_Stack.html

graphPackStack

Make Window

Make Line
T

Clean Window

Trash Window

Figure 3: “The graphPack Window”

The “Make Line” Button Script

A very minimal script for testing the “makeline” command in graphPack might
look like this:

on mouseUp
-- makelLine command with x1, y1, x2, y2
graphPack 2, 55, 44, 205, 194

The resulting window looks like this:

The “Clean Window” Button Script

And finally, T can clean the window, re-drawing the PICT, with the “Clean
Window” button, which has this script:

on mouseUp
-- cleanWindow command with PICT resource ID 1
graphPack 3, 1

end mouseUp

The Revised Source Code

Note that this source code does not fit well into my current HTML template.
The code in the PDF version of the article is more readable. You can also
download the source code. See “How to Get the Source Code,” at the end of
this article, below.

Figure 4: “A Line in the Window”

Source code file 1 of 3: graphPack.h

/**/

/%
/%
/%
/%
/%

File: graphPack.h
Supplies the prototype for our XCMD entry function Dispatchommand ()

The original code is from 1988. Updated 2025.

*/
*/
*/
*/
*/

/KA A KA A A KA A KA A A A A KA A KA KA AH A KA KA HH KA A AFH KA A KA A KA KA KK KK KKK KKK)

void SelectCommand (XCmdPtr paramPtr) ;

(Yes, that’s really all that is needed in the header file, since there is only one
function in graphPack that has external linkage.)

Source code file 2 of 3: graphPack.c

/**/

/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%

File: graphPack.c
Thts file should be compiled in a project along with the following:

- XCMDshell.c
- the MacTraps library

The original code is from 1988.

PRP: March 2025: updated this file for use with THINK C 5, changed
function definitions from K&R style to ANSI C style, improved
comments, and made some minor code improvements. Got rid of a number
of NewHandle and NewPtr calls for Str31 strings, as these did not
seem necessary. Ideally I would use statically-allocated file-scope
(so-called "global") Str31 wariables for temporary strings, instead
of allocating them on the stack, but when an XCMD is exzecuting, the
global wvariable base address in A5 is configured for HyperCard's
globals, not the XCMD's, and using globals will corrupt HyperCard's
state. Supposedly there are ways to work around this by saving,
altering, and restoring A5. I've been able to get this to work in
other types of MacOS code resources such as INIT files, but not
XCMDs .

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

Kok KoK oK o oK ok oK oK o oK oK ok oK ok KoK oK ok K ok oK oK oK o K ok oK ok o oK oK ok oK ok o oK ok ok K ok o ok ok o oK ok ok oK oK ok K ok oK oK ok Kok ok
#include <Memory.h> /* handle routines */

#include <0SEvents.h> /* declares FlushEvents() */
#include <Resources.h> /* declares ReleaseResource() */
#include <HyperXCmd.h> /* declares HyperCard callbacks */
#include <ToolUtils.h> /* declares GetString() */
#include "graphPack.h" /* declares DispatchCommand() */

/*
myStringID is the ID number of the STR resource (in the HyperCard
stack hosting this XCMD), which contains the name of the global
HyperTalk variable (which should be defined in your stack script),
which wtll hold a pointer to the window created by the XCMD. This
allows the same window to persist between calls to the XCMD.
Thts sounds overly complicated, but once it is set up, it is simple
to use from your HyperCard stack.

*/

#define G_NAME_ID 100

/*

Prototypes for the routines defined in this file.
*/
static short paramToShort(XCmdPtr paramPtr, char *cstr);
static long paramToLong (XCmdPtr paramPtr, char *cstr);
void SelectCommand (XCmdPtr paramPtr) ;

static void makeWindow (XCmdPtr paramPtr);
static void makeLine (XCmdPtr paramPtr);

static void putWindowPtr (XCmdPtr paramPtr, GrafPtr theWindow,
long strID);
static GrafPtr getWindowPtr (XCmdPtr paramPtr, long strID);

static void trashWindow (XCmdPtr paramPtr);
static void cleanWindow (XCmdPtr paramPtr);

/KA A AR A A A A A A A A AAAAA A A A KA AAAAA A A KKK KKKAAAA AN KKK KK)
/* A helper function to turn an incoming parameter into a short. This */
/* uses glue functions to make two callbacks into HyperCard. The */
/* parameters come in as zero-terminated C-style strings. Convert the */
/* parameter to a Pascal-style string with a length byte, then turn it */
/* into a short. */
/KA AR A A AAAAA A A AAAAAAAA A KKK AAAAAAAA KKK KKK KAAAAAAKKKK KK)
static short paramToShort(XCmdPtr paramPtr, char *cstr)

{
Str31 param_buf;
ZeroToPas (paramPtr, cstr, (StringPtr)param_buf) ;
return (short)StrToNum(paramPtr, param_buf) ;

}

S HFFAK AR AT AR AR KA AR A FFAR AT AAK AT FAK AR KT AR AR AT KK AKARKFKKKNKHK)
/* A similar helper function that returns a long. */

/*********>k**/
static long paramToLong(XCmdPtr paramPtr, char *cstr)

{

Str31 param_buf;

ZeroToPas (paramPtr, cstr, (StringPtr)param_buf);

return (long)StrToNum(paramPtr, param_buf) ;
}
/KA A A A A A A A A A KA A A A A KA A AHEH A A A H KA AHH KA H A A A KK HH A A KA H KA A KKK KKK)
/* This ts the dispatcher which determines which one of the routines */
/* in the graphPack XCMD to run. */

JHEAKAIAIATAK A KA IAIAFAK A I IATAKAK K IAIAFAR A I IAFAKAK KK FAIATAKAKKFFAKA)
void SelectCommand (XCmdPtr paramPtr)

short which_command;
GrafPtr saved_port;

/* Save HyperCard's GrafPort */
GetPort (&saved_port) ;

PurgeMem ((8ize)5000) ;
which_command = paramToShort (paramPtr, (char*)*paramPtr->params[0]);

switch (which_command)

{
case 1:
if (paramPtr->paramCount == 2)
{
makeWindow (paramPtr);
}
else
{
SysBeep (40) ;
}
break;
case 2:
if (paramPtr->paramCount == 5)
{
makeLine (paramPtr);
}
else
{

SysBeep (40) ;

10

}

break;

case 3:
if (paramPtr->paramCount == 2)
{

cleanWindow (paramPtr);

3

else
{

SysBeep (40) ;
}

break;

case 9:
if (paramPtr->paramCount == 1)
{

trashWindow (paramPtr);

3

else
{
SysBeep (40) ;
}
break;
}
FlushEvents (everyEvent, 0);

/* Restore HyperCard's GrafPort */
SetPort (saved_port) ;
}

/KA A A A H KA A A H KA A A A H KA A A HeH KA A H K HeH KA A A HEH A A A H KA A A KA KK A KA KKK KKK)
/* This function will initialize a dBoxProc window at the location of */
/* the PICT read, and draw the PICT in it. To start with a blank window */

/* use an empty PICT */
[K IR AR A KR ARAN KRR AR A KA AN KR ARAK A KT RARAN AT ARAKAKK IR AR KKK FKKKKKHK)

static void makeWindow (XCmdPtr paramPtr)
{

long which_pict;

Rect bounding_rect;

WindowPtr theWindow;

PicHandle myWindowBox;

which_pict = paramToLong(paramPtr, (char*)s*paramPtr->params([1]);

myWindowBox = GetPicture(which_pict);

11

}

bounding_rect = (*myWindowBox)->picFrame;

theWindow = NewWindow(OL, &bounding_rect, "\P", true,

SetPort (theWindow) ;

dBoxProc,

(WindowPtr)-1L, false, OL);

DrawPicture (myWindowBox, &theWindow->portRect);
ReleaseResource ((Handle)myWindowBox) ;

putWindowPtr (paramPtr, theWindow, G_NAME_ID);

/***>I<**/

/* This function reads two coordinate pairs in order to draw a line
/* segment in a window owned by the XCMD.
/KA AR A A AAAAAA A HHHAAAAAAAA A KK KA AAAAAAA A KK KKAAAAA AN KK KKK)

void makeLine (XCmdPtr paramPtr)

{

}

GrafPtr xcmdWindow;

short horiz, vert, newhoriz, newvert;

horiz = paramToShort (paramPtr,
paramToShort (paramPtr,
newhoriz = paramToShort (paramPtr,
newvert = paramToShort(paramPtr,

vert

(char#)*paramPtr->params[1]) ;
(char*)*paramPtr->params [2]) ;
(char*) *paramPtr->params [3]) ;
(char*)*paramPtr->params [4]) ;

xcmdWindow = getWindowPtr(paramPtr, G_NAME_ID);

SetPort (xcmdWindow) ;
ForeColor (magentaColor);

PenSize(2,2);

MoveTo (horiz, vert);
LineTo (newhoriz, newvert);

*/
*/

/K K KA A A A A A A A A e e e e HH A A A A A A A A e e e KK H A A A A A A A e e KKK AAAAA KKK KKK)
This function will redraw the window owned by the XCMD. This will

/%
/%
/*
/*
/*

effectively erase anything drawn in the window since it was created.

The first parameter is the ID of the PICT resource to be opened.
This can be the PICT resource that was used with createWindow, or

different one.

a

*/
*/
*/
*/
*/

J/H KA KA A A KA KA KA A KA KA A A KA KA A A A A KA A KA KA KA A KA A KA KA KA KA KKK KKK)

void cleanWindow(XCmdPtr paramPtr)

{

GrafPtr xcmdWindow;
long which_pict;

PicHandle myPict;

12

which_pict = paramToLong(paramPtr, (char*)*paramPtr->params([1]);
myPict = GetPicture(which_pict);

/* Retrieve the window pointer from the HyperTalk global */
xcmdWindow = getWindowPtr (paramPtr, G_NAME_ID);

/* Draw the PICT */

SetPort (xcmdWindow) ;

DrawPicture (myPict, &xcmdWindow->portRect);
ReleaseResource ((Handle)myPict) ;

b

/KA A A A A A A A A A H A A I HFE A A A A A A A A A A A A KA AA KK KA KKK KKK f
/* This function will get the current window pointer from HyperCard, */
/* set the global wvariable that holds it to NULL, and dispose of the */
/* window. */

/**/
void trashWindow(XCmdPtr paramPtr)

{
GrafPtr xcmdWindow = getWindowPtr (paramPtr, G_NAME_ID);
DisposeWindow (xcmdWindow) ;
/* Store NULL into the HyperTalk global */
putWindowPtr (paramPtr, (GrafPtr)0, G_NAME_ID);

}

/K K e A A A A A A A A e e e e HHHAAAA A A A e e KK KA AAAA A A KK KHKAAAAA KKK KKK)
/* This routine will call back into Hypercard to store a pointer to the */

/* window, in string form. The strID is used to look up the string */
/* resource, which should be in the HyperCard stack, containing the */
/* name of the HyperTalk global variable to store the pointer in. */

/AR A A A HAE KA KA A A F A HA A HAE KA KA A A A A FA A KA KA KAA KA FA KKK KKK
void putWindowPtr (XCmdPtr paramPtr, GrafPtr theWindow, long strID)
{

Str31 param_buf;
StringHandle global_name;
Handle new_value;

/* Put the GrafPtr, in Pascal string form, into the given buffer. */
LongToStr (paramPtr, (long)theWindow, param_buf) ;

/* Get the global variable name as a handle to a string resource. */
global_name = GetString(strID);

13

/* Get the new wvalue as a handle to a C string. */
new_value = PasToZero(paramPtr, (StringPtr)param_buf) ;

/* Set the global wvariable to the new value. */
SetGlobal (paramPtr, (StringPtr)#*global_name, (Handle)new_value);

ReleaseResource ((Handle)global_name) ;
DisposHandle (new_value) ;

¥

/KA A AAAAAAA A A HHHHAAAAAAAAA A A A KK HFAAAAAAAAA A A KK K HFAAA A A AN NN KKK)
/* This function will return a pointer to the window owned by the */
/* graphPack XCMD graphPack. It accepts the ID number of the string */
/* resource which contains the name of the HyperTalk vartable holding */
/* the pointer. */

JHRARFAIAIAK AR AR AIARAR AR I A AR AR AR A A A AR KA AR AR KT A AT AR AR A FAFAKAK)
GrafPtr getWindowPtr (XCmdPtr paramPtr, long strID)

{
GrafPtr xCmdWindow;
StringHandle global_name;
Handle value;
/* Get the global variable name as a handle to a string resource. */
global_name = GetString(strID);
/* Get the wvalue of the HyperCard global as a handle to a C string */
value = GetGlobal (paramPtr, (StringPtr)*global_name) ;
xCmdWindow = (GrafPtr)paramToLong(paramPtr, (char *)=*value) ;
ReleaseResource((Handle)global_name) ;
DisposHandle(value) ;
return xCmdWindow;
3

Source code file 3 of 3: XCMD.shell.c

/***********************>l<**/

/* File: XCMDshell.c */
/* This file should be comptiled in a project along with the following */
/% files: */
/* */
/* = graphPack.c */
/% — HyperXLib (for XCMD interface callbacks) */
/* — the MacTraps library */

14

/% — XCmdshell.c */
/* */
/* The original code s from 1988. */
/AR AAAAAAA A HHHHAAAAAAAA A KKK AAAAAAA A KKK KKK AAAA AN KK KKK)
#include <HyperXCmd.h>
#include "graphPack.h"

/*
Prototype for the XCMD main function, defined to use Pascal calling
conventions as required by HyperCard's XCMD calling mechanism.

*/

pascal void main(XCmdPtr paramPtr);

pascal void main(XCmdPtr paramPtr)
{
SelectCommand (paramPtr) ;

}

How to Get the Source Code

I have made the code available in two ways. If you want to work with the source
code, HyperCard stack, and THINK C 5 project on a Macintosh or Macintosh
emulator, you will need to download it in a format that preserves the original
MacOS file metadata and resource forks. I’ve made a Stufflt archive available:
talking back_graphPack.sit. You’ll need to put Stufflt Expander on your real
or emulated Macintosh.

If you want to just browse the source code and don’t need the stack, THINK
C projects, and MPW Makefile, you should be able to use this zip file on just
about any computer: talking back graphPack.zip.

Keep the vision of old Macintosh programming alive!

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

15

./bin/talking_back_graphPack.sit
./bin/talking_back_graphPack.zip
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	About graphPack
	Revisiting graphPack
	Formatting
	Modernizing the C Code

	The New graphPackStack
	The HyperTalk Scripts
	The Stack Script
	The “Make Window” Button Script
	The “Trash Window” Button Script
	The “Make Line” Button Script
	The “Clean Window” Button Script

	The Revised Source Code
	Source code file 1 of 3: graphPack.h
	Source code file 2 of 3: graphPack.c
	Source code file 3 of 3: XCMD.shell.c

	How to Get the Source Code

