
Retrospective: The LimCon HyperCard Stack

Paul R. Potts

1988-1990 and March 2025

This article is dedicated to the memory of Dr. Donald Beane, 1929-2024. You
can read his obituary here.

Dr. Beane and Me
In 1989, while I was a student at the College of Wooster, I worked on a project
for Dr. Donald Beane, a mathematics professor. The exact details are slightly
hazy now, so please forgive any errors.

Dr. Beane had written course materials on the subject of limits and continuity,
topics from introductory calculus. He made these available to students in at the
form of a printed handout, which looks like it was prepared on a typewriter. I
believe there was also a version of the material available as an interactive tutorial
that ran on the DEC VAX minicomputer, written using something called DAL.
I don’t recall much about this, unfortunately.

However it came about, Dr. Beane arranged to have me paid as a grader for the
mathematics department, since there wasn’t a software development fund per
se. I worked with Dr. Beane to turn his material on limits and continuity into
a program for the Macintosh, which could run on the computers in the Taylor
Hall computer lab. The result was a HyperCard stack called LimCon. At the
time, I recall that there were several Macintosh II computers with color CRT
screens in the main atrium, as well as a larger number of compact Macintosh
computers (Mac Plus or similar models) in a separate computer lab. I designed
LimCon to run on these Macintosh II computers.

HyperCard
I was an early user of, and big advocate of, Apple’s HyperCard, a remarkable,
innovative programming tool that encouraged millions of people, many with-
out any traditional programming experience, to develop personal databases,
presentations, games, and many other kinds of programs. HyperCard creates
documents called “stacks,” which are made up of “cards,” a familiar, easy-to-
understand metaphor. Among the many innovations HyperCard introduced,
from my perspective the most important ones were:

1

https://www.the-daily-record.com/obituaries/pwoo0691596
https://en.wikipedia.org/wiki/HyperCard


• a tools palette that was a menu item, but could be “torn off” and turned
into floating window

• the ability to hide the menu bar and run stacks full-screen
• cinematic transition effects like slides and dissolves
• the ability to paint in layers (for example, one could paint in white pixels

in the foreground over black pixels in the background, which was like using
white-out)

• the object-oriented inheritance model, where functions could be defined at
the stack level, the background level, the card level, and the object level

• the property model (similar to object properties in C++ and other pro-
gramming languages)

• the HyperTalk language, an amazing attempt at making a programming
language that read like to English

As soon as HyperCard arrived, programmers began looking into ways of extending
its functionality. Stacks were limited to black-and-white, but developers like
Rand and Robyn Miller used HyperCard to create graphical games like Myst,
released in 1993.

Writing Plug-ins for HyperCard
Several years before Myst, beginning around 1986, I had begun teaching myself
C programming, graphical user interface design, and Macintosh application
development, not as part of work for any specific class, but on my own and with
some friends with similar interests. I became interested in the HyperCard external
command (XCMD) and external function (XFCN) mechanism, that allowed
development of “plug-ins,” written in C or Pascal, to extend the capabilities of
HyperCard. I developed an XFCN called graphPack, which allows HyperCard
stacks to open up a separate window and draw in it, and published a couple of
articles about how to write external commands and functions. These are in my
portfolio now; this one gives a simplified explanation of how graphPack works.
Later, at the Office of Instructional Technology, I would wind up developing a
similar XFCN called sndPack (pronounced “sound pack”), a plug-in library
for playing sounds in ways that HyperCard by itself could not, particularly
continuous sine wave tones, which I used to implement a simulation of an
audiometer — but that story should go into another retrospective article.

Running LimCon Today
In March 2025 I was able to get my LimCon tutorial stack running under the
Basilisk II emulator and found that it works fairly well. The program has some
things about it that are awkward and ugly, though. I’ll mention the biggest
one up front: the XFCN code, called from HyperCard, can open up a separate
window and draw in it, and I can pass the window pointer back to HyperCard
so it is persistent, and the window can stay in place, and the code can draw
more in the same window over time. But there is not any mechanism by which I

2

https://en.wikipedia.org/wiki/Myst
./Talking_Back_to_HyperCard.html
https://en.wikipedia.org/wiki/Audiometer


can ask HyperCard to manage this window when my code is not running. Since
my XFCN code is not an application, it doesn’t receive events; HyperCard is
the running application, and receives events. This all means that I could not
make the window behave like a normal application window. I could not make it
respond to mouse clicks, or allow itself to be dragged around the screen. I could
not even get it to redraw itself when something else has appeared on the screen
in front of it, overwriting the window’s content. So if a screen saver kicks in, or
the user drags another window in front of the graphPack window, the graph is
partly or fully erased, and there’s no way for my code to learn that it needs to
redraw the window’s contents.

This wasn’t really a big issue for when users were assigned to run the program on
the original computers in the lab, but it certainly isn’t ideal, and wouldn’t have
been acceptable in a commercial application or game. I don’t know exactly how
Myst avoided issues like this, but I do know that their implementation worked
quite differently: in Myst, the game’s window fills the whole screen, so that the
running HyperCard stack is not visible at all on the screen during gameplay,
while my LimCon stack is designed to share the screen with the drawing window.
Also, the team that developed Myst had more technical resources available; Myst
wasn’t a project put together by a sleep-deprived college student in the time he
really should have been studying.

Running on an old Macintosh II, LimCon placed the drawing window in such
a way that it fit right over a specific area of the stack that I left blank for
this purpose. Running under the emulator, the stack doesn’t open the window,
relative to the stack’s position on the screen, quite the way it did when running
on those old Macintosh II computers. The window winds up a little bit too high
up, and obscures part of the title bar of the stack window. That’s one thing that
doesn’t look quite right. Also, on the original hardware, the user could watch as
the stack slowly drew the functions. Under emulation, the process of drawing
the functions happens so quickly that the graphs appear almost instantly. No
matter. Although it doesn’t work perfectly, I was quite excited to be able to run
it again, and capture some screen shots.

Here’s the title screen:

I was not much of an artist, and I’m still not much of an artist, but that figure
on the right is supposed to be Dr. Beane. If you click on him, he utters a little
scream, and his hair briefly stands on end:

I can’t recall if I ever showed him that particular little feature, but I’m confident
he would have taken it in stride, as he was always kind, and had a gentle and
self-deprecating sense of humor.

Here’s the credits window: this is another separate window opened by my
aboutbox XCMD, which loads an image I added to the stack’s resource fork:

The main menu is supposed to keep track of the user’s progress by showing
topics checked off after they were completed. In this screen shot, it indicates

3

https://en.wikipedia.org/wiki/Resource_fork


Figure 1: “The LimCon Title Card”

Figure 2: Dr. Beane, Hair Standing on End (Artist’s Rendering)

4



Figure 3: “The LimCon Credits Window”

5



that I have already completed the first topic:

Figure 4: “The LimCon Main Menu”

There is a separate quiz stack that the user can launch from this menu, and it
does work, but unfortunately I only ever completed the first topic. The quiz
isn’t especially interesting, and doesn’t use any special plug-ins or programming
tricks.

Now, here’s a card showing the external window created by my graphPack
XFCN. Note that it drew the graphs in magenta. This may not seem like an
exciting innovation, but at the time, if you were accustomed to using monochrome
compact Macintosh systems running monochrome HyperCard stacks, it was a
surprise to see a stack suddenly draw something in color.

How LimCon Works with graphPack
The graph of the rational function is made by drawing several pieces using
different functions “packed into” graphPack. The graphPack XFCN actually
contains a suite of functions. The desired function is selected by the first
parameter, and any additional parameters needed are included after the first.

6



Figure 5: “LimCon Showing a Rational Function”

7



• graphpack 1, … creates the window
• graphPack 2, … draws a line segment
• graphPack 3, … draws an arrowhead, placed at the beginning and end of

sections of the curves of functions
• graphPack 4, … draws a missing-point discontinuity (a hollow circle)
• graphPack 5, … draws a removable point (a filled circle)
• graphPack 6, … draws a vertical dashed line indicating a vertical asymp-

tote
• graphPack 7, … draws a large arrow to point out features on the graph
• graphPack 8, … erases an arrow drawn with graphPack 7, since we

sometimes want to draw an arrow, then erase it
• graphPack 9, … disposes of the window
• graphPack 10, … draws a horizontal dashed line indicating a horizontal

asymptote

The support for horizontal dashed lines must have been a late addition, or I
would have made it #7. It would have been very tedious to to change the
numbering throughout the HyperCard stack.

First, let’s look at how the window is created. There is one additional parameter
supplied after graphPack 1, …, an ID to use for a string resource that will be
used to refer to the container holding the pointer. (That’s a bit complex, but
necessary to allow persistent storage in HyperCard variables; let’s just say it is an
indirect reference to a place we can store the pointer to the newly-createsd window.
If the window has not been created yet, it comes back as zero). This is handled
in getWindowPtr, which is used by each of the functions in graphPack. If
the window is created, the persistent value is set with putWindowPtr.

void makeWindow (paramPtr)
XCmdBlockPtr paramPtr;

{
long which_pict;
Rect bounding_rect;
WindowPtr theWindow;
PicHandle myWindowBox;
Str31Handle pict_num;

theWindow = getWindowPtr(paramPtr, 100);
if (theWindow == 0)
{

pict_num = (Str31Handle)NewHandle(sizeof(Str31));
ZeroToPas(paramPtr,(char*)*paramPtr->params[1],

(StringPtr)*pict_num);
which_pict = StrToNum(paramPtr,*pict_num);
myWindowBox = GetPicture(which_pict);
bounding_rect = (*myWindowBox)->picFrame;
theWindow = NewWindow (0L, &bounding_rect, "\P", TRUE,

8



plainDBox, -1L, FALSE, 0L);
SetPort(theWindow);
DrawPicture(myWindowBox, &theWindow->portRect);
ReleaseResource(myWindowBox);
putWindowPtr(paramPtr, theWindow, myStringID);

}
else SysBeep(40);

}

Next, let’s look at how the line is drawn. The code that handles graphPack 2,
… looks like this:

void makeLine(paramPtr)
XCmdBlockPtr paramPtr;

{
short horiz, vert, newhoriz, newvert;
Str31Handle str;
GrafPtr xcmdWindow;
double *myext;

xcmdWindow = getWindowPtr(paramPtr, 100);

if (xcmdWindow != 0)
{

SetPort(xcmdWindow);
str = (Str31Handle)NewHandle(sizeof(Str31));
myext = (double*)NewPtr(sizeof(double));

ZeroToPas(paramPtr,(char*)*paramPtr->params[1],
(StringPtr)*str);

StrToExt(paramPtr, *str, myext);
horiz = scalex(*myext);

ZeroToPas(paramPtr,(char*)*paramPtr->params[2],
(StringPtr)*str);

StrToExt(paramPtr, *str, myext);
vert = scaley(*myext);

ZeroToPas(paramPtr,(char*)*paramPtr->params[3],
(StringPtr)*str);

StrToExt(paramPtr, *str, myext);
newhoriz = scalex(*myext);

ZeroToPas(paramPtr,(char*)*paramPtr->params[4],(
StringPtr)*str);

StrToExt(paramPtr, *str, myext);
newvert = scaley(*myext);

9



DisposPtr(myext);
DisposHandle(str);

ForeColor (magentaColor); /* in color on a Mac II */
PenSize(2,2);
MoveTo (horiz, vert);
LineTo (newhoriz, newvert);

}
else SysBeep(40);

}

That seems like a lot of code to do something as simple as drawing a line segment,
and it is, but it is all necessary. If the window pointer is zero, something has
gone wrong — we may be calling graphPack functions in the wrong order,
trying to use a window before it has been created. In this case the function just
beeps and exits. A user should never hear this beep, but it was helpful to me
while I was debugging the stack logic. If the window pointer is not zero, the
function executes several similar chunks of code that take care of converting
additional parameters passed to graphPack — the line’s endpoint coordinate
pairs — from floating-point numbers, passed as strings, into short (16-bit integer)
types. HyperCard uses Pascal-style strings, with a length byte first, and C uses
C-style strings, with no length byte but a terminating zero byte, and so there is
overhead to convert between them.

All this is tedious and no doubt contributed to the slowness of the original
drawing. From my current perspective in 2025, I’m not sure that the code really
needed to allocate str and myext dynamically, although there may have been
a reason for doing it this way that I can’t now recall, such as a strict limit on
the stack space that an XFCN was allowed to use. I also see opportunities for
refactoring this function, by using some helper functions. But it worked, and
that was my primary goal at the time.

After all that setup, we have our coordinate pairs, and the rest is straightforward:
we set the color, set the pen width (two pixels wide), move to the starting point,
and draw a line to the ending point.

After the curve of the function is drawn, the stack calls graphPack3, … to
draw the arrowheads at the ends of the curve, which uses this function:

void arrowHead(paramPtr)
XCmdBlockPtr paramPtr;

{
short horiz, vert, angle;
#define rectOffset 25 /* size of starting Rect */
#define arrowWidth 30 /* width of 1/2 the arrowhead in degrees */
Rect theRect; /* to draw wedge in */
Str31Handle str;

10



double *myext;
GrafPtr xcmdWindow;

xcmdWindow = getWindowPtr(paramPtr, myStringID);
if (xcmdWindow != 0)
{ SetPort(xcmdWindow);

str = (Str31Handle)NewHandle(sizeof(Str31));
myext = (double*)NewPtr(sizeof(double));

ZeroToPas(paramPtr,(char*)*paramPtr->params[1],
(StringPtr)*str);

StrToExt(paramPtr, *str, myext);
horiz = scalex(*myext);

ZeroToPas(paramPtr,(char*)*paramPtr->params[2],
(StringPtr)*str);

StrToExt(paramPtr, *str, myext);
vert = scaley(*myext);

ZeroToPas(paramPtr,(char*)*paramPtr->params[3],
(StringPtr)*str);

angle = (short)StrToNum(paramPtr,*str);

DisposHandle(str);
DisposPtr(myext);

MoveTo(horiz,vert);
SetRect (&theRect,

horiz - rectOffset/2,
vert - rectOffset/2,
horiz + rectOffset/2,
vert + rectOffset/2);

angle -= (180 + arrowWidth);
PaintArc (&theRect, angle, 2 * arrowWidth);

}
else SysBeep(40);

}

As you can see, there’s some similar overhead for extracting parameters. The
arrowheads are not really triangles, but acute sectors of a circle — a bit more
complex than is apparent at first glance! Sadly, they don’t quite look perfectly
aligned with the line representing the graph of the function, so a little more
tweaking was probably in order, but keep in mind that as a student, the time I
could put into this project was limited.

The little circle indicating the discontinuity at x = 2 is drawn by the following
code, handling graphPack 4, …:

11



void missingPoint(paramPtr)
XCmdBlockPtr paramPtr;

{
Rect theRect; /* to draw circle in */
theRect = SetupPoint(paramPtr);
ForeColor(whiteColor);
PaintOval (&theRect);
ForeColor(magentaColor);
PenSize(1,1);
FrameOval (&theRect);

}

In this C function, The SetupPoint function is called, and returns a rectangle.
The code will draw the circles inside that rectangle, using the PaintOval
QuickDraw function, which can draw any filled oval (a circle is just a special
case of an oval). The code first draws the filled circle in white, erasing a circular
area of the graph so that the circle will appear hollow, and then draws just the
outside of the circle using FrameOval, in magenta.

Drawing Curves by Drawing Straight Lines
Now that we’ve looked closely at what parts of graphPack do, let’s look more
closely at what parts of the HyperTalk code in the stack do. Let’s consider how
the quadratic function shown on the card below is drawn:

How did it draw smooth curves? Well, they aren’t really smooth curves. Calcu-
lating a value for every pixel along the curve of the function would have taken too
long, so LimCon really calculates the endpoints of a series of short line segments
that approximate the curve. Here’s the HyperTalk code that runs when the user
reaches this card:

on openCard
global thefunction, x, y, xmin, xmax, xinterval, xplot, yplot
graphPack 1,1
put "x*x-1" into thefunction
put -2.5 into xmin
put 2.5 into xmax
put .25 into xinterval
put plotit() into it
put xmin into x
put value of thefunction into y
graphPack 3, x, y, 350
put xmax into x
put value of thefunction into y
graphPack 3, x, y, 10
graphPack 4, 2, 3
graphPack 5, 2, 1

12



Figure 6: “LimCon Showing a Quadratic Function”

13



end openCard

Note that the code above invokes a function called plotit, which draws a given
function as a series of segments:

function plotit
global thefunction, xmin, xmax, xinterval
put xmin into x --initial value of x
repeat while x<=xmax
put x*2 into oldx
put (value of thefunction)*2 into oldy
add xinterval to x
--if we have gone too far, draw to the endpoint only
if x>xmax then
put xmax into x
put value of thefunction into y
put x*2 into newx
put y*2 into newy
graphPack 2, oldx, oldy, newx, newy
exit repeat

end if
put x*2 into newx
put (value of thefunction)*2 into newy
graphPack 2, oldx, oldy, newx, newy

end repeat
choose browse tool

end plotit

Additional Functions of graphPack
The HyperTalk function plotit receives a parameter called thefunction, but
in HyperTalk, all parameters are strings. How does this work? The simple
quadratic function itself is stored in a global variable thefunction as the string
“x*x-1,” and is evaluated repeatedly; each time it is evaluated, it is able to access
the local variable x by name. HyperTalk lets us pass a function as a value,
and execute the function in a context where the function can reference local
variables by their names. This is somewhat similar to the way we could use eval
in the Scheme programming language to evaluate a function stored in a string
at runtime, which is a very powerful feature!

As the user progresses through the stack of cards, later cards can continue to
draw in the same window, rather than starting over again with an empty window.
As the explanatory text on the quadratic function continues to the next card,
the stack uses graphPack 7, … to draw the big pointers, using this function:

void drawPointer(paramPtr)
XCmdBlockPtr paramPtr;

{

14

https://en.wikipedia.org/wiki/Eval


PolyHandle arrowPoly;
arrowPoly = SetupPointer(paramPtr);
ForeColor(magentaColor);
PaintPoly(arrowPoly);
KillPoly(arrowPoly);

}

This code is similar to the code that draws the empty circles indicating disconti-
nuity, in that it calls a function, SetupPointer, to prepare for drawing. In this
case, the object returned by the helper function is not a rectangle indicating the
bounds of the circle, but a QuickDraw polygon, created by the helper function as
a series of lines, drawn according to the desired horizontal or vertical orientation.
I won’t include the whole SetupPointer function, since it has more tedious
parameter-handling overhead, but here is the part of the code that creates the
polygon out of a series of line segments:

PolyHandle arrowPoly = OpenPoly();

switch (rotation) /* horizontal orientation */
{

case 0:
horiz += 10;
MoveTo(horiz, vert);
LineTo(horiz+10, vert-10);
LineTo(horiz+10, vert-5);
LineTo(horiz+30, vert-5);
LineTo(horiz+30, vert+5);
LineTo(horiz+10, vert+5);
LineTo(horiz+10, vert+10);
LineTo(horiz, vert);
break;

case 1:
vert += 5;
MoveTo(horiz, vert);
LineTo(horiz+10, vert+10);
LineTo(horiz+5, vert+10);
LineTo(horiz+5, vert+30);
LineTo(horiz-5, vert+30);
LineTo(horiz-5, vert+10);
LineTo(horiz-10, vert+10);
LineTo(horiz, vert);
break;

}
ClosePoly();
return arrowPoly;

As the user progresses through the topic, the stack continues to use the capabilities

15



of graphPack. In the following screen shot, it has used graphPack 4, … to
draw a missing-point discontinuity, and graphPack 5, … to draw the removable
point, which is drawn like the missing-point discontinuity, except filled in rather
than hollow:

Figure 7: “LimCon Drawing a Quadratic Function with a Discontinuity”

I’ll share one more – here’s a screen shot of LimCon drawing a function with a
vertical asymptote:

Here’s the part of the code that draws the dashed line:

MoveTo(horiz, (xcmdWindow->portRect.top) + 5);
ForeColor(magentaColor);
PenSize(2,2);
GetPen(&ourpenloc);
while (ourpenloc.v <= (xcmdWindow->portRect.bottom) - 15)
{

LineTo(ourpenloc.h, ourpenloc.v+10);
MoveTo(ourpenloc.h, ourpenloc.v+20);
GetPen(&ourpenloc);

}

16



Figure 8: “LimCon Drawing a Function with a Vertical Asymptote”

17



And that just about covers how LimCon draws functions with graphPack.

Loose Ends
Running this stack again in 2025, and looking at the files I saved, I notice a
few things I don’t fully understand. I am struggling to remember just how I
created it. I recall how I wrote the plug-in code. But how did I render all those
formulas? I don’t quite know! I’ve only included a few screen shots, but there
are 258 cards in the stack, most of which contain formulas.

I do have a couple of files that appear to be old Microsoft Word for Macintosh
files. LibreOffice can open these, and I can also open them with an ancient
version of Microsoft Word running on the Basilisk II emulator, but with either
of these, the files appear to contain a confusing mix of stuff that looks like the
LimCon formulas, and stuff that looks garbled, full of slashes and Greek and
accented characters. Maybe I’m missing a font? I think I might have used
markup that Microsoft Word supported back then for rendering mathematical
formulas, even if I don’t know how to get it to look right today. But there still
would have been an awful lot of screen-shotting, copying and pasting images,
etc. — and, probably, hours of tweaking graphics with HyperCard’s pencil tool
— to get these rendered formulas into the HyperCard stack. And there’s also a
30KiB binary file called LIMCON — what is it? An old file for the VAX? I just
don’t know. I’ll update this article if I figure it out.

I have written two other articles that you might find interesting. The first one
is called Understanding Lightspeed C: Talking Back to HyperCard. In this
article, which was originally published in Washington Apple Pi Journal in 1989,
I describe a simplified version of graphPack and explain the mechanism by
which HyperCard can call code in an XCMD, and vice-versa.

After writing this retrospective article, I decided to take a crack at improving
the simplified graphPack code and building and running it under emulation.
I describe what I did in Talking Back to HyperCard Revisited. That article
contains the full source code for my simplified version of graphPack, as well as
links to download my THINK C and HyperCard files.

Closing Comments
My memories of the time I spent at the College of Wooster are fading a bit
now after 35 years, but I am grateful that I saved a number of old documents,
including this HyperCard stack, and the source code for the plug-ins, to jog my
memory. The memories are happy ones. Although I didn’t do all that well in
his Calculus 111 class — which I don’t blame him for, as I was not a very good
math student at the time — I did like Dr. Beane personally, look forward to
our meetings, and enjoy working on this project. I even learned a few things. I
am grateful to Dr. Beane and the College of Wooster for providing me with the
opportunity, environment, and support I needed to work on projects like this. I

18

Talking_Back_to_HyperCard.html
Talking_Back_to_HyperCard_Revisited.html


hope you have enjoyed this retrospective!

19


	Dr. Beane and Me
	HyperCard
	Writing Plug-ins for HyperCard
	Running LimCon Today
	How LimCon Works with graphPack
	Drawing Curves by Drawing Straight Lines
	Additional Functions of graphPack
	Loose Ends
	Closing Comments

