Python 2020: Lots of Movement, Little
Improvement

Paul R. Potts

August 2020

Yesterday I dove into improving some Python code for a work project, and I was
reminded all over again why, although I like many things about it, Python is not
my favorite programming language, with tooling that still, in 2020, often feels
more like a hobby project rather than a piece of critical infrastructure. I spent
an embarrassingly long time trying to determine the cause of a bug that resulted
in my program generating data files that were incorrect, and inconsistent with
the previous version of my program. I'll explain that below for nerds who might
be interested.

Understanding the Bug

The bug happened when calling this relatively simple Python function. This
function generates a Python byte array, which is a simple data structure that
just grows as needed to hold a series of data bytes. Python has opaque data
types that allow programs to be written with a high level of abstraction. That’s
great, but because I'm generating binary data files, sometimes I need to write
code that operates on low-level data types with exactly the sizes and behaviors
that T want. The NumPy (numeric Python) library provides some precise data
types such as uint32 that allow me to do what I need:

from numpy import uint32

def serialize_msbin_eeprom_record_header(record_data_size : uint32, record_data_checksum :

msbin_record_header = bytearray()

msbin_record_header.extend(uint32(0x80000000 | AT25MO1_HIGH_QUARTER_BASE_ADDRESS))

msbin_record_header.extend(record_data_size)
msbin_record_header.extend(record_data_checksum)

return msbin_record_header

The bug was cropping up in the last line before the return statement, the one

that operates on record_data_ checksum. The byte array was being extended
by eight bytes, not four. What?

I was calling this function from code that looked like this:

elements_v1l_data_checksum_uint32 = uint32(sum(serialized_elements_bytesio.getvalue()))
elements_v1l_extended_checksum_uint32 = elements_vl_data_checksum_uint32 + sum(serialized_v:

msbin_bytes.extend(serialize_msbin_eeprom_record_header(elements_vl_extended_size_uint32,

The first line starts with a BytesIO object, which is basically an in-memory
binary file object; calling getvalue() on that object returns a byte array, and
the sum() function, when passed a byte array, creates a byte-by-byte checksum.

The second line adds to this checksum to create an extended checksum. It sums
another byte array and adds the value to the previous uint32 object.

Then, I create a uint32 object from this sum. This uint32 object then gets
passed to the serialize__msbin__eeprom_ record__header() function I de-
scribed above.

The function parameter has a type annotation: record__data_ checksum

uint32. This tells the Python interpreter (or compiler) that the second
parameter is, or at least ought to be, a uint32 object. Type annotations exist
in many other languages and have for decades. Python is a dynamically typed
language, similar to Apple’s Dylan language, but just recently has gained this
new type annotation feature. Dylan had optional type annotations in the early
1990s: if you didn’t specify types, the compiler would generate code without
doing compile-time type-checking, instead doing run-time type checking. This
allowed developers to use it more like a scripting language, writing code quickly
without worrying about the exact types they were using. Then, the code could
be tightened up later: the development environments had features that would
indicate “hot spots” where the generated code was less efficient due to this
run-time type checking, to help programmers add strict tying where it would be
useful.

What was really happening in my code? The uint32 object was being converted
to a uint64 object when I added another value to it, and then this uint64 object
was being sent to the serialize_ msbin__eeprom_ record__header() function
instead of the uint32 object it was expecting. And Python was fine with this,
because the type annotations don’t actually do anything when you run the code
under “CPython,” the standard and most widely-used Python interpreter. These
annotations are designed to be used with separate type-checking programs that
aren’t part of the standard Python distribution for Windows.

Changing to a 64-bit Type

So why did this change to uint64 happen? Let’s try creating a simple piece of
code that replicates the problem:

from numpy import uint32

num_1 = uint32(1)
num_2 = uint32(2)
num_3 = 3

num_4 = num_1 + num_2

num_5 = num_1 + num_3
print ('num_4 value: ' + str(num_4) + ", type: " + str(type(num_4
print ('num_5 value: ' + str(num_5) + ", type: " + str(type(num_5

This prints the following output:

>num_4 value: 3, type: <class 'numpy.uint32'>
>num_5 value: 4, type: <class 'numpy.int64'>

These small values can’t be overflowing. Instead, what we are seeing is the
effect of rules designed to prevent overflow. Different languages do this in quite
different ways, and so it was not immediately obvious to me, as I typed the
original line of code, what would happen.

In languages like C, unsigned integer types by definition are allowed to overflow
or underflow. If you have a 32-bit unsigned integer that is holding the maximum
possible 32-bit value, OXFFFFFFFF in hexadecimal or 4,294,967,295 in decimal,
and you add one to it, the value will “roll over” and become zero. The C standard
guarantees this behavior.

This rationale is complex, but the short version is that back when computers
were large and slow, doing otherwise would have required runtime checks, in
software or in hardware, to detect overflows or underflows. And so this behavior
was enshrined in the C standard, and developers like me are accustomed to it —
indeed, we rely on it all the time.

But what about the uint32 type in Python’s NumPy library?
Well, the NumPy documentation is pretty vague. It says:

The behavior of NumPy and Python integer types differs significantly
for integer overflows and may confuse users expecting NumPy integers
to behave similar [sic] to Python’s int.

I know that Python’s int handles overflow gracefully and safely, with some cost
in efficiency.
But it doesn’t give much detail describing how NumPy types actually work.

There are a couple of possible ways that the library could handle possible overflow
conditions when adding two uint32 objects:

e The value could simply be allowed to overflow, as in C. Because NumPy
is designed for speed, to provide a faster alternative to Python’s general-
purpose data structures, this is the behavior I would have expected. The
comment in the NumPy documentation suggests that this might be the

)))
)))

https://numpy.org/doc/stable/user/basics.types.html

case because NumPy integers “may confuse users” and don’t behave like
int.

¢ Adding two uint32 objects could always generate a result with the next-
larger type, uint64, no matter how large the actual numbers in those
objects are. That would be simple but incur some space overhead whether
it is needed or not.

e The generated code could actually look at the values in the objects, and if
necessary, either return the larger type, or generate an error.

I didn’t really know how the NumPy library handles this overflow, but I didn’t
think I needed to know, since I didn’t expect that my checksums of small data
structures would ever be large. I was writing a script, which is very problem-
specific, rather than a library, which should be able to handle all boundary
conditions safely. But let’s take a quick look at how it works:

from numpy import uint32

num_1 = uint32(OxFFFFFFFF)

num_2 = uint32(1)

num_3 = num_1 + num_2

print ('num_3 value: ' + str(num_3) + ", type: " + str(type(num_3)))

This prints the following output:

>./test.py:4: RuntimeWarning: overflow encountered in ulong_scalars
> num_3 = num_1 + num_2
>num_3 value: O, type: <class 'numpy.uint32'>

Interesting: the overflow was detected, but the program generated a warning,
not an exception, and so terminated normally.

Adding a Built-in Type to a NumPy Type

That’s what happens when adding two uint32 types. But that’s not what my
code was doing. My code was adding a Python int type to a NumPy uint32
type. And that’s where my expectations broke down.

from numpy import uint32

num_1 = uint32(OxFFFFFFFF)

num_2 = 1

num_3 num_1 + num_2

print ('num_3 value: ' + hex(num_3) + ", type: " + str(type(num_3)))

prints:

>num_3 value: 0x100000000, type: <class 'numpy.int64'>

The num_ 3 was promoted to a 64-bit type. And it did the promotion even
though the value wouldn’t overflow:

from numpy import uint32

num_1 = uint32(1)

num 2 = 1

num_3 num_1 + num_2

print ('num_3 value: ' + hex(num_3) + ", type: " + str(type(num_3)))

prints:

>num_3 value: 0x2, type: <class 'numpy.int64'>

Replicating C’s Behavior

In C, the behavior when using mized types, unsigned and signed together, in
expressions, is trickier. Integer types are “promoted” before operations are done.

It looks like the NumPy library attempts to replicate C’s behavior in this case
and avoid potential overflow conditions, and so the int, even though it contains
only a small value, is promoted to the larger uint64 type — which I didn’t
even import because I didn’t plan to use it — before the addition is performed.
I’d have to look at the source code for NumPy to figure out exactly what is
happening, but the point is, I shouldn’t have to.

So it seems like we have the worst of several worlds now; we know from our
“RuntimeWarning” that the NumPy library can generate overflow warnings
when adding two uint32 objects, so there is code generated which does this
range-checking. But when a uint32 is added to a standard Python number, the
return value is the larger uint64. Because Python is dynamically typed, from
the interpreter’s perspective, nothing has actually gone wrong. And then, even
with type annotations, this type change isn’t caught by CPython because type
annotations aren’t actually used for type-checking. I just get unexpected output.

By the way, I tried the 3rd-party mypy utility, which is billed as a “linter” for
Python programs, and supposedly reads the type annotations, to see if it would
have caught the problem. It didn’t report an issue.

Python is now widely used in education, having displaced simpler and more
tightly-specified languages such as Scheme. I'm trying to imagine a first-year or
second-year computer science student trying to figure out this problem, when
expressions can wind up with unexpected types, and the language and tools are
not designed to help.

Python is also widely used in various industries; it’s used very extensively at
Google, and the language’s designer was a Google employee for a time. With this
kind of backing, one might think that Python might have had its foundations
shored up and improved; it might have even re-tooled to take advantage of some
advances in language implementation that came about in the 1980s and 1990s.

One of these big corporate backers might have invested money to make type
annotations actually work to make the code safer and more efficient.

I've been programming and studying computer science long enough to have
some understanding of language design, and I’ve lived to see the same mistakes
repeated again and again, as the tools underlying our critical infrastructure
emerge from informally-specified hobby projects, and language designers don’t
really ever seem to learn from their predecessors.

Can we hope for better, in the career and lifetime I've got left? I'm getting
tired of wasting so much time debugging, and of the slow churn of language
development that is really traveling without moving.

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

https://www.youtube.com/watch?v=YQinzWG_p1w
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Understanding the Bug
	Changing to a 64-bit Type
	Adding a Built-in Type to a NumPy Type
	Replicating C’s Behavior

