My Home Library Database, Round 1

Paul R. Potts

October 2023

The Library Database Project

I’ve long wanted to keep some sort of database of our entire library. Years ago
I was using a Mac application called Delicious Library, which had some really
nifty features. I could type in a title, and it would look up different editions
via Amazon’s database. I could then select the edition you had, and it would
download the data and put a little image of the book’s cover on a virtual shelf.
I could rearrange these virtual shelves to match our real shelves. I could even
use a camera to scan the bar codes on books and CDs, and it would look them
up, getting them right about 80% of the time. Unfortunately, a few years ago,
Amazon enshittified their database API, and those features stopped working.

Delicious Library was never perfect; it was often extremely slow, taking several
minutes to update a book. I think it used Berkeley DB under the hood, but it
had very limited export options. You can export a CVS file containing dozens
of columns, but the data is very irregular and hard to work with. It might be
possible to get at the database files that the application manages behind the
scenes and open them up with Berkeley DB, but Berkeley DB is now some kind
of Oracle product and I don’t want to get into all that nonsense. I might be able
to import the exported CSV file into Excel, or in my case actually LibreOffice
Calc, but it is such a mess it may just be easier to start over.

I don’t actually want to keep thousands of books in a spreadsheet, and I certainly
don’t want to use a proprietary application. What I really want is a true
relational database, something that I can query using SQL, and create different
views of the data. And I want a lot of flexibility to import and export files.
The tools all have to be open source and the formats have to be supported by
multiple, readily-available tools.

SQLite

What I settled on is SQLite. SQLite is a library and a standard file format
that allows applications to work with small databases. (Even our library, with
thousands of books, CDs, and videos, is still a small database for this kind of
purpose; even my laptop will easily hold the whole thing in memory, and queries
should be pretty much instantaneous).

https://en.wikipedia.org/wiki/Delicious_Library
https://en.wikipedia.org/wiki/Enshittification
https://en.wikipedia.org/wiki/SQLite

The “front end” I'm currently using is a program for Mac called DB Browswer
for SQLite. Although it does crash occasionally after running for a long while
and doing lots of editing, for the most part it is very nice and easy to work with.
It’s a graphical user interface, but when you’re making tables or performing
queries, it’s using SQL under the hood. And not very far under the hood; you
can open up a window and see what it’s doing. You can also write your own
SQL and execute it if you want to.

The database file is on my Synology file server. I save my work frequently and
the server backs itself up to a cloud storage service every week, so I'm not terribly
worried about losing work due to an occasional crash. The files are so small
that it is very easy to periodically make a ZIP file of the whole folder and give
it a date. The latest one, which includes all the data, as well as a number of
exported CSV and HTML files, takes up only 86KiB. Text files are very small
compared to image files and video files.

SQL

9

SQL stands for “Structured Query Language,” and it is a very old, but still
widely used, tool for talking to databases and getting them to do your bidding.
Unfortunately there are a lot of slightly incompatible dialects of the language.

Years ago, when I was in college, I was an English major, not a Computer Science
major. I took all the programming classes I could fit into my schedule, and so got
a minor in Computer Science. Some of my classmates who actually completed
the Computer Science major took a course on databases, but I did not. So that
was a bit of a hole in my education.

A few years later I learned how to write front ends for Oracle using Apple’s
WebObjects, and then later to debug stored procedures written in PL/SQL.
Along the way I did teach myself a bit about databases, and I had to use basic
SQL to work with Oracle and PostgreSQL, but I didn’t ever consider myself an
expert.

I last used SQL in a job over twenty years ago. So it’s been an interesting
challenge to try to get back into it. I don’t really love the syntax of SQL, and I
often have trouble figuring out where to put clauses to make them work, but
there’s no denything that it is an incredibly useful and powerful tool, and one
can’t really be a well-rounded programmer without knowing at least a little bit
about how to use databases and SQL.

A home library might seem like it would require only a very simple database,
but our home library is unusually large. Also, as your friendly neighborhood
computer geek, I want the database to be structured “just so” — just the way I
want it, not the way somebody else wants it. After a little bit of searching, I
was unable to find a sample database schema that would do what I wanted, so I
have come up with my own. I've refined it over time, as I gradually add data to
the database.

https://sqlitebrowser.org/
https://sqlitebrowser.org/
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/SQL

One of the nice things about this GUI tool is that if I want to change the table
design, which I've done as I gradually worked out what I wanted to do, it’s
easy to do. If for some reason I can’t modify the existing table, which happens
sometimes if I want to make major changes, I can dump the data out to CSV
files, destroy the table, make a new table, and import the data back into the
new table. So I’ve been able to rip up and rearrange the database structure as
I have made incremental design changes, although it has settled down for the
time being.

I'm pretty sure that I'm not using keys in an optimally efficient way, but given
the size of the database, that doesn’t really matter. I've also had to accept
the idea that I'm not going to be able to complete this project quickly. Right
now I’ve got just over three hundred paper books in the database. I estimate
that there may be five thousand to go. The data entry is quite tedious. I try
to chip away at it, doing a few books a day. As I go on, I'm getting more
efficient at it. And as I go on, I may be able to find ways to speed it up, such
as importing chunks of data from the aforementioned CSV files dumped from
Delicious Library.

Let’s take a look at my database design.

My Library Database Design

I would like to have some nice entity relationship diagrams to include here, that
show how the tables and keys fit together. There are a number of tools that will
make such diagrams from SQL, including some open-source programs that run
on Macs, and some web-based tools that supposedly come with free trials. I tried
an open-source tool, implemented in Java, but had endless problems getting it
to work, due to compatibility problems with JDBC libraries on Apple Silicon.
I was once pretty good at solving problems with Java, but that was over 20
years ago and I was paid to do it. I also tried one of the online tools that looked
promising. I signed up for a free trial, and the tool would import my SQL, but I
could not get it to make the diagrams I was hoping for. So, for the time being I
have given up on making nice diagrams from my SQL.

Instead, I’ll just show you my SQL. If you want to play with this design, it ought
to be pretty easy to use just about any relational database, such as PostgreSQL,
to create a database with the same schema.

Authors The authors table can be created using the following SQL:

CREATE TABLE "Authors" (
"Name" TEXT NOT NULL,
"Short Description" TEXT NOT NULL,
"Bio URL" TEXT,
"Notes" TEXT,
PRIMARY KEY("Name")

The “Authors” table exists to maintain a set of of canonical author names. They
are entered as first name, last name. The name is the primary key. Other tables
can link to these authors using foreign keys, and these references must match
canonical author names. The required short description contains years of birth
and death (if the author has died), and nationality. The optional “Bio URL”
field contains links to a biography on Wikipedia or other online source describing
the author. In the optional “Notes” field, I sometimes include information about
pen names and alternate spellings of foreign names. Currently, there are 196
authors in this table. The first entry is for James Agee, and the fields look like
this:

e Agee, James

e American novelist and journalist 1909-1955
o https://en.wikipedia.org/wiki/James_ Agee
« NULL

(The NULL indicates there is nothing in the “Notes” column.)

Publishers The publisher table is generated by the following SQL:

CREATE TABLE "Publishers" (
"Name" TEXT NOT NULL,
"URL" TEXT,

"Notes" TEXT,
PRIMARY KEY("Name")
)

The name in this case is the name of the publisher. A typical entry looks like
this:

e Berkley
o https://www.penguin.com/berkley-overview/
e Now an imprint of Penguin

Due to the truly massive amount of consolidation that has occurred in the
publishing industry, the majority of the publisher names on the spines of my
books now refer to companies that are either imprints of other publishers,
subsidiaries of other publishers (sometimes two or three layers deep, after a long
history of mergers or acquisitions), or completely defunct. This consolidation
has been a disaster for small publishers and diversity in the book market. By
recording the publisher name as it is appears on the books, as well as some
current information about the publisher, if I can find any, I'm trying to leave
bread crumbs, which might help someone in the future to find more information
about an edition, even in cases where the publisher displayed on the book has
changed its name, often more than once.

Paper Book Types This table contains canonical descriptions of different
types of paper books. The SQL is very simple:

https://en.wikipedia.org/wiki/James_Agee
https://www.penguin.com/berkley-overview/

CREATE TABLE "Paper Book Types" (
"Book Type" TEXT NOT NULL,
PRIMARY KEY("Book Type")

)3

The editions table refers to the book type as a foreign key, so that the book
types follow a canonical set of descriptions. Here are a few of them:

e Chapbook

o Hardcover

e Trade Paperback

e Mass Market Paperback

o Jacketed Hardcover with Traycase

o Jacketed Hardcover with Slipcase

e Hardcover with Slipcase, No Jacket as Issued
¢ Paperback Book with Unusual Features

“Paperback Book with Unusual Features” covers special editions like Haruki
Murakami’s The Strange Library, a slim little art book with covers that fold
and wrap around the entire book, so that you open it as if you were unwrapping
a present. This list of paper book types will grow as I add books that are
unusually sized, boxed sets, books that are collections of pamphlets, issues of
magazines, etc. If the book is more-or-less a standard kind of book, like a
slipcased hardcover edition, but has interesting features like foil printing, a
psychedelic cover, a fabric-wrapped cover, die cutting on the cover, dust jacket,
or slipcase, silk-screening on the page edges, tip-ins, included floppy discs or
CD-ROMs, etce., I describe those features in the “Notes” field.

Paper Book Shelving Areas This is another simple table:

CREATE TABLE "Paper Book Shelving Areas" (
"Description" TEXT NOT NULL,
PRIMARY KEY("Description")

)3

I use this table to hold a canonical list of shelving areas, not shelving units.
For example, I currently have two bookshelves devoted to Library of America
books. They get a single name in this table. Sometimes the names just refer
to a distinct section of books within a shelving unit, such as our set of books
from New York Review Books, which are shelved together because they form a
rainbow of matching volumes. Technically I could interleave them with other
books in the other shelving areas by author, but they look cool shelved together:

Paper Book Editions This table is where things start to get interesting,
since three of the columns contain foreign keys that refer to columns in other
tables; this is where the “relational” in “relational databases” really comes into

play.

Figure 1: “New York Review Books, the First Three Shelves”

CREATE TABLE "Paper Book Editions" (
"Author" TEXT,
"Other Contributors" TEXT,
"Title" TEXT,
"Publisher" TEXT,
"Book Type" TEXT,
"ISBN-13" TEXT UNIQUE,
"Edition Notes" TEXT,
PRIMARY KEY("ISBN-13"),
FOREIGN KEY("Publisher") REFERENCES "Publishers"("Name"),
FOREIGN KEY("Book Type") REFERENCES "Paper Book Types"("Book Type"),
FOREIGN KEY("Author") REFERENCES "Authors" ("Name")
);

The primary key for this table is the ISBN-13, “canonicalized” into the form
HHH-FHHHHHHH#H#-#. Different sources show ISBN-13 numbers with the
dashes in different places. Why did I choose this form? It’s complicated, but
it has to do with the way ISBNs are broken into a heirarchy of variable-length
fields, and I wanted a generic format that would be consistent for all of them.

ISBN doesn’t work for everything. Editions can have the same ISBN with
different cover art, or different physical formats. Some books have no ISBN
number. Folio Society editions don’t have them. Some Subterranean Press
editions don’t have them. And many older books don’t have them. In this case
I make up a number that includes the publisher name followed by a number, for
example, Folio-001. If there is anything else that seems important to distinguish
this edition from other editions of the same book, I put it in the notes field.

The “Other Contributors” gives me a field I can use for translators, editors, illus-
trators, and people who contribute introductions, prefaces, forewords, afterwords,
or whatever, as specified on the title page or cover.

This scheme allows me to have multiple editions of books with the same title and
author. For example, I might have editions of the same original book translated
by two different translators. It also allows me to have multiple copies of the
same book, since this table does not actually hold the books themselves. They’re
in the next table.

Paper Books At last, the books. This table mostly references other tables:

CREATE TABLE "Paper Books" (
"ID" INTEGER UNIQUE,
"Brief Author & Title" TEXT,
"ISBN-13" TEXT,
"Shelving Area" TEXT,
"Shelf Number" INTEGER,
"Shelf Order" INTEGER,
"Copy Notes" TEXT,

PRIMARY KEY("ID" AUTOINCREMENT),
FOREIGN KEY("Shelving Area") REFERENCES "Paper Book Shelving Areas"("Description") ,
FOREIGN KEY("ISBN-13") REFERENCES "Paper Book Editions"("ISBN-13")

);

The “Brief Author & Title” field is not the full title or the canonical author or
publisher. The full title is in the “Paper Book Editions” table. Indirectly, the
editions table references the authors and publishers, so this field is technically
redundant and not strictly necessary, but because I can’t read ISBNs while I'm
entering data into the “Paper Books” table, it is easy to get confused and and
lose my place. To avoid that, I wanted a readable way to easily identify the
books in this table. So, the “Brief Author & Title” contains the author’s last
name and the book’s title, as in “Proust: Swann’s Way.”

I’'m not entirely happy with this design, due to the redundancy, but in practice
it has proven helpful. If T could easily edit the data in the “Paper Books” table
while I could see the indirectly linked author and title on the screen, populated
after I enter the ISBN-13 which is used as a foreign key, I wouldn’t need this
field. I'm sure there are ways to do this, but they probably involve tools that
build forms. The lightweight DB Browser for SQLite tool doesn’t seem to do
that, and I’'m not sure what tools I might try next.

The “Shelf Order” field needs a bit of explanation. Sometimes, author and title
aren’t enough to specify the order that I use for books on the shelf. This is
true of anthologies and omnibus editions containing work by a single author.
For example, I have Library of America editions of the novels of Philip K. Dick
called Four Nowvels of the 1960s and Five Novels of the 1960s and 70s. On the
shelf, T put the books in chronological order, rather than alphabetical order by
title. But the database normally sorts books in alphabetical order by title, after
shelf number and author. Thus, they appear out of order in the database, since
alphabetically, “Five” comes before “Four.”

“Shelf Order” can be NULL, and is NULL in most cases, so that I don’t have
to specify a value for every book; alphabetical order is the default. But this
allows me to specify an ordering for a sequence of books by an author, when
alphabetical order isn’t what I want.

Sample Views These are the first six shelves of our Library of America
collection:

Here’s a SQL statement to create a view to show the Library of America books
that have authors (that is, they are single-author volumes, not anthologies or
collections of some sort):

CREATE VIEW "loa-shelves-single-author-volumes-view" AS select
'Paper Books'.'Shelving Area',
'Paper Books'.'Shelf Number',
'Paper Book Editions'.Author,

'Paper Book Editions'.Title,
'Paper Book Editions'.Publisher,
'Paper Book Editions'.'ISBN-13',
'Paper Book Editions'.'Book Type',
'Paper Book Editions'.'Edition Notes',
'Paper Books'.'Copy Notes'
from
'Paper Books'
inner join 'Paper Book Editions'
on 'Paper Book Editions'.'ISBN-13'='Paper Books'.'ISBN-13'
where 'Paper Books'.'Shelving Area'="Library of America" and 'Paper Book Editions'.Aut]
order

by 'Paper Books'.'Shelving Area', 'Paper Books'.'Shelf Number', 'Paper Book Edition:
case 'Paper Books'.'Shelf Order' when null then 'Paper Book Editions'.Title else

That did not come easily; I had to read some SQL reference materials and
scrutinize a number of different examples to fit those pieces together, but it
works. The view makes it look like I have a nice simple table of just the Library of
America single-author volumes, when really it is pulling data from the database
and organizing columns from multiple tables.

Here are the first few rows produced by the above view, in CSV form. CSV is a
bit awkward to read because some fields are quoted, and some aren’t. Quoting
is normally used when the field contains the separator character, which in this
case is a comma. For readability I have exported these records using a space as
the field separator, which makes the data a bit more legibleWhen it’s done this
way all strings that contain spaces are quoted. I’ve also inserted blank lines to
make it clearer where the rows begin and end.

"Library of America" 1 "Agee, James" "Let Us Now Praise Famous Men, A Death in the Family, :
"Library of America" 1 "Alcott, Louisa May" "Work, Eight Cousins, Rose in Bloom, Stories & |

"Library of America" 1 Anderson,Sherwood "Collected Stories" "Library of America" 978-15985:

I can use pandoc to convert the CSV to Markdown, and put the Markdown in
this document for processing by pandoc. That will produce a nice HTML table,
although it is very wide, and with the style sheet I'm using for this newsletter,
the HTML likely won’t be very readable in your browser, and in the PDF, the
table will march right off the edge of the page. But here it is anyway:

Shelving Area Shelf Number Author Title

Library of America 1 Agee, James Let Us Now Praise Famous Men, A Death in the
Library of America 1 Alcott, Louisa May ~ Work, Eight Cousins, Rose in Bloom, Stories &
Library of America 1 Anderson,Sherwood Collected Stories

10

The point is not so much not that I can read the data in an ideal way, but that
using a database like this gives me a lot of options for different kinds of reports.

One thing I haven’t figured out is how to ignore leading articles like “the,” “a,”

and “an” while sorting. There are ways to do this, but I haven’t tried them
yet, and I’'m not sure which ones are best practices (or even which ones work)
in SQLite. For now, if I have a problem with sorting, I fix it using the “Shelf
Order” field, but I don’t want to have to rely on this solution as the database
gets larger; in some cases I have a lot of books by specific authors, and I don’t
want to have to maintain shelf order numbers for all of them.

For the Library of America anthologies, the view of those books is created a
little bit differently; I don’t want to show the author, which is NULL; in fact, I
select only the Library of America books with empty author fields:

CREATE VIEW "loa-shelves-anthologies-view" AS select
'Paper Books'.'Shelving Area',
'Paper Books'.'Shelf Number',
'Paper Book Editions'.'Other Contributors',
'Paper Book Editions'.Title,
'Paper Book Editions'.Publisher,
'Paper Book Editions'.'ISBN-13',
'Paper Book Editions'.'Book Type',
'Paper Book Editions'.'Edition Notes',
'Paper Books'.'Copy Notes'
from
'Paper Books'
inner join 'Paper Book Editions'
on 'Paper Book Editions'.'ISBN-13'='Paper Books'.'ISBN-13'
where 'Paper Books'.'Shelving Area'="Library of America" and 'Paper Book Editions'.Autl
order

by 'Paper Books'.'Shelving Area', 'Paper Books'.'Shelf Number',
case 'Paper Books'.'Shelf Order' when null then 'Paper Book Editions'.Title else

How Long Will This Take?

I've completed about 22 individual shelves. There are 130 more shelves of books
to catalog, not counting the children’s books in the family room, the DVDs,
the Blu-rays, and the CDs. So, this is obviously going to take a while. I'll be
looking for shortcuts, but there’s going to be a lot of data entry and editing. I
am hoping that the catalog might be fully complete by this time next year. As I
go, I'm taking photographs of each shelf. These are going into folders on the
server as a reference. These can be updated periodically. I don’t expect them
to stay perfectly synchronized with the database, since the collection slowsly
changes. As a shortcut, if I add books, I can just add photos of the new books
to the folders, rather than taking a whole new set of pictures of the shelves.

11

https://stackoverflow.com/questions/3252577/how-to-sort-in-sql-ignoring-articles-the-a-an-etc

It would be nice if T could incorporate the photos right into the view, but so far
my experiments putting JPEG file into “blobs” in the database made the DB
Browser application run incredibly slowly, even though the JPEG files really
aren’t that large. So I'll be avoiding that for the time being.

The fact that this is all built on SQL and text suggests that I might be able to
come up with future uses for it in the future, such as a web-based front end for
checking out books. But I'm not going to dive into that anytime soon, and I'm
not going to “overdesign” for future front-ends that may never happen.

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

12

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	The Library Database Project
	SQLite
	SQL
	My Library Database Design
	How Long Will This Take?

