
How I Use GNU Make

Paul R. Potts

December 2021

Below I describe why and how I use GNU Make, together with other tools, to
generate web pages and PDF files from my common source code in Markdown.

The Mac-Free Workflow

I’ve used plenty of different kinds of computers in the last 45 years, but for
actually getting writing done, I’ve long preferred Macs. My favorite editor is
BBEdit. It’s a reliable workhorse and very fast. I’d rather use BBEdit than
any other editor. BBEdit is Mac-only, though. Notepad++ is a pretty capable
alternative on Windows, and if I have to work on a Windows machine, and if I’m
allowed to allow software on it, I quickly install Notepad++. Why? The have
features that I use all the time — for example, both of them allow rectangular
selection. But I haven’t truly ever found a similar text editor that I loved on
Linux. I can do the basics in vi, but I’m just not as quick and effective when
writing in vi as I am using a visual editor.

I am still getting used to it, and I can’t say I love it, but Visual Studio Code is
pretty decent. I love the themes — they work very well on modern high-dynamic-
range screens where pure white or pure black are just too bright or too dark and
the extreme contrast is hard on the eyes. I’m partial to the “Monokai” family of
themes.

The Mac version of Visual Studio Code feels speedier and seems to be ahead
of the Linux version, but the Linux version is OK, too. But one thing I really
miss is BBEdit’s worksheet concept, borrowed from MPW, the old Macintosh
Programmer’s Workshop. Worksheets are editable documents which allow you
to select text and execute it. The output of the commands shows up right in the
worksheet. So it’s like using the command line, except tht you can visually edit
the commands you are issuing, and keep a log of the results. I use worksheets
extensively for producing podcasts and for writing. When I start a new podcast,
I will often copy and paste the text I used for a previous episode, update the
title and some details, and go from there. I do similar things with the sets of
commands I use to generate HTML and PDF files from Markdown files.

Visual Studio Code doesn’t have worksheets, but it does allow me to open up
a convenient terminal pane right in the GUI. I’ve long wondered how hard it

1

https://code.visualstudio.com/
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop
https://en.wikipedia.org/wiki/Macintosh_Programmer%27s_Workshop

would be to use make for my writing workflow. With a little time off to work
on it, I decided to dive and try it.

The Basics of make

The make utility program, which on Linux usually means GNU Make, but can
mean other similar tools on other platforms, is a very old program designed in a
different computing world. I’ve used many versions of make over the years on
many platforms, going back to MS-DOS, and I understand the basic idea. I’ve
written some simple Makefiles, but I never really dove into more complicated uses.
Searching the web, I found some blog posts and Github projects that include
Makefiles for working with pandoc, but I was not able to easily understand
them, and they seemed to lack some of the features I needed. I spent a little
time looking for a more modern alternative to make that would be suitable, but
they all seemed too heavyweight, too language-specific, or too complex.

I own a print copy of the GNU Make manual written by Richard M. Stallman
and Roland McGrath, and that seemed like a good place to start. Unfortunately,
it really wasn’t. Although the book does have some Makefile examples into it,
it is mostly an in-depth reference to the more arcane built-in functions. The
examples included are extremely simple and don’t use most of the features
described. So, I had to try to learn the hard way, building a Makefile from the
ground up, and simply experiment until I figured some things out.

When I say that make “is a very old program designed in a different computing
world,” here are a few examples of what I mean by that:

• It operates on directories and files, but the lists of files are handled internally
as text strings.

• Make doesn’t have anything like modern quoted string types, with support
for escaped characters.

• Make’s support for wildcards doesn’t look much like it does in other
programming environments you might be used to, such as Bash or Perl.

• Make offers library functions for pattern-matching rather than regular
expressions.

• It operates on lists of “words” (delimited by spaces).
• The use of spaces as word delimiters results in strict limitations on the

characters that can be in directory and file names.
• Make does not have modern facilities for working with directories, other

than as strings.

And, finally,

• Commands in rules must always be indented using tab characters, not
spaces!

That last thing is a minor irritant, but it’s one of the longest-lasting minor
irritants in the entire history of software development. Just in case you wind
up trying to copy and paste excerpts from my Makefile, below, into one of your

2

own, you should be aware that, depending on which tools you are using, the
resulting text may not contain the necessary tab characters, and if it doesn’t,
make will complain about that.

My make Use Case

What I’m trying to do doesn’t seem too hard. I’m working with directories full
of Markdown files that are part of project directories. The source tree is also
version-controlled using Git. The structure looks something like this:

[my personal server directory]/
writing/

src/
the_coffee_underachiever/

Makefile
md/

2019/
file1.md
file2.md
file3.md

2020/
file4.md
file5.md

2021/
file6.md

img/
index.md

I want this to get transformed into a somewhat different structure, where the
generated files are staged to be synchronized with my web host:

[work dir]/
sites/

writing/
the_coffee_underachiever/

2019/
file1.html
file2.html
file3.html
pdf/

file1.pdf
file2.pdf
file3.pdf

2020/
file4.html
file4.html
pdf/

3

file4.pdf
file5.pdf

2021/
file6.html
pdf/

file6.pdf
index.html
img/

Defining My Variables

The make program allows a Makefile to define variables. They are really
space-delimited strings. We specify directories including the trailing slash.

SRC_ROOT_DIR = .
MD_SRC_ROOT_DIR = $(SRC_ROOT_DIR)/md/
IMG_SRC_ROOT_DIR = $(SRC_ROOT_DIR)/img/
DEST_ROOT_DIR = ~/Documents/sites/writing/the_coffee_underachiever/
DEST_PDF_SUBDIR = pdf/
DEST_IMG_DIR = $(DEST_ROOT_DIR)img/

For example, DEST_IMG_DIR becomes “~/Documents/sites/writ-
ing/the_coffee_underachiever/img/”

We can do wildcard expansion in many places in Make, but the * syntax doesn’t
work when defining a variable; instead we have to use the built-in wildcard
function. To include the contents of a variable, we use the $(variable_name)
syntax. We can combine these and define a variable that contains a list if
space-delimited “words,” where each “word” will be a filename with its path, for
example ./md/2019/file1.md.

SRC_MD_DOCS = \
$(wildcard $(MD_SRC_ROOT_DIR)*.md) \
$(wildcard $(MD_SRC_ROOT_DIR)2019/*.md) \
$(wildcard $(MD_SRC_ROOT_DIR)2020/*.md) \
$(wildcard $(MD_SRC_ROOT_DIR)2021/*.md)

I’d like it if there was a make function which would search a subtree starting
from a given point — for example, I’d like it if I could use a single built-in
function to create a list of full paths to all the .md files in the md directory
and its subdirectories, recursively, but I don’t think there is. I think it’s possible
to do this by including shell commands in the Makefile itself. I’ve seen examples
of this, but for various reasons I’m not happy with this technique, so I’m going
to avoid it for now.

Note that the “list” generated by the variable definition is really not even a list
in the Lisp sense, but a single string consisting of space-delimited “words.” The
first few words are:

4

./md/index.md ./md/2019/file1.md ./md/2019/file2.md

Note that this means the filenames and directory names can’t contain any spaces!
This was normal in the days when systems ran early versions of UNIX, as well as
CP/M and MS-DOS. But severe restrictions like this haven’t been common since
the development of more user-friendly systems, which include modern versions
of UNIX. So we now have a tool that runs on UNIX and Linux systems that
imposes much more severe restrictions on filenames than the systems themselves.

I don’t like this restriction; many of my files contain spaces as well as other
characters that cause trouble with tools such as make, including single and
double quotation marks. I’d rather work with a tool with facilities that will
handle arbitrary filenames and directory names, but for now I’m willing to live
with these limits and change my filenames to conform to these requirements.
Long-term, I’ll be looking for a more modern tool.

Creating My Target File Lists

Anyway, I’ve now got a list of all the Markdown files, but to specify make rules
for creating targets from the prerequisites, I need to specify the targets. The
make utility provides a number of functions that process these lists of files. As
I mentioned before, the manual I was working from is very light on real-world
examples, so I had to experiment. Here’s a variable definition I came up with for
generating a list of my target HTML files from the list of precedent Markdown
files. I’ll present the definition first and then explain it a bit.

DEST_HTML_DOCS = \
$(subst $(MD_SRC_ROOT_DIR),$(DEST_ROOT_DIR), \

$(join \
$(dir $(SRC_MD_DOCS)), \
$(addsuffix .html, \

$(basename $(notdir $(SRC_MD_DOCS))))))

The multiple levels of indentation are not strictly required, but I wrote it this way
because to me, the Make functions look a bit like Lisp primitives, which makes
sense, given Stallman’s background and work on Emacs Lisp. Working from the
inside out, we start by applying two functions to $(SRC_MD_DOCS), dir
and notdir. The dir function takes a word, or list of words, and returns only
the part or parts that look like directory paths, not filenames, using a simple
heuristic (recall our restrictions on directory names). The notdir function gives
us only the filenames. So we’ve got two “lists” now:

./md/ ./md/2019/ ./2019/
index.md filename1.md filename2.md

I apply the basename function to the output of notdir, which yields the
filenames without extensions:

index filename1 filename2

5

https://en.wikipedia.org/wiki/Emacs_Lisp

And then the addsuffix command:

index.html filename1.html filename2.html

The join command is, if you squint, a bit like a list zip command in a language
like Haskell. It assembles the elements from two lists of the same length into
one, giving us:

./md/index.html ./md/2019/filename1.html ./md/2019/filename2.html

Finally, we use the subst function to replace a substring of each word, giving us:

~/Documents/sites/writing/the_coffee_underachiever/index.html ~/Documents/sites/writing/the_coffee_underachiever/2019/filename1.html ~/Documents/sites/writing/the_coffee_underachiever/2019/filename2.html

If it’s occurred to you that using textual substitution on filename paths is fragile
and subject to all kinds of breakage, especially since it doesn’t appear that this
substitution will only take place starting from the beginning of the string, you’re
absolutely right! There is certainly a better way, but probably not one that can
be implemented entirely in make — it’s built on very soft foundations more
suited for a simpler and gentler computing ecosystem.

For generating the paths for the PDF files, I have a similar definition, except
that I don’t want to generate a PDF file of the index. So I filter that word out:

SRC_MD_DOCS_NO_INDEX = \
$(filter-out $(MD_SRC_ROOT_DIR)index.md, $(SRC_MD_DOCS))

Then I generate the list of PDF targets like I did the HTML targets:

DEST_PDF_DOCS = \
$(subst $(MD_SRC_ROOT_DIR),$(DEST_ROOT_DIR), \

$(join \
$(dir $(SRC_MD_DOCS_NO_INDEX)), \
$(addprefix pdf/, \

$(addsuffix .pdf, \
$(basename $(notdir $(SRC_MD_DOCS_NO_INDEX)))))))

This definition is obviously very similar to the previous one, differing only by
the prefix and suffix. There may be a way to factor out a common function here,
but I’m not sure; while make is, I think, certainly Turing-complete, it is lacking
a lot of things that I think of as fundamental to programming languages.

Generating Targets with Pandoc

Here’s some scaffolding for generating pandoc commands:

PANDOC=/usr/bin/pandoc
PANDOC_OPTIONS=--ascii --standalone --shift-heading-level-by=-1 \

-f markdown+smart
PANDOC_HTML_OPTIONS=--to html5
PANDOC_PDF_OPTIONS=

6

https://en.wikipedia.org/wiki/Turing_completeness

Now that we’ve got our lists of documents, we can write rules that match on them.
Let’s write a rule that should turn any of our Markdown files into corresponding
HTML files, where the % character matches any substring in our file path —
but note that % must match the same thing on both sides.

$(DEST_ROOT_DIR)%.html : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_HTML_OPTIONS) -o $@ $<

In this case it will match on a substring like:

2021/2021_02_21_Shelving_the_Library

which is found in both the target:

/home/paul/Documents/sites/writing/the_coffee_underachiever/2021/2021_02_21_Shelving_the_Library.html

and the predecessor:

md/2021/2021_02_21_Shelving_the_Library.md

But the following rule will not work for PDF files, since the pdf/ subdirectories
exist in the output directories:

$(DEST_ROOT_DIR)%.pdf : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

Instead we need to match on a rule that takes the structural difference into
account. We can’t just append the pdf/ subdirectory on the left, since the
match includes the filename, so this won’t work:

$(DEST_ROOT_DIR)%pdf/.pdf : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

Have I mentioned that debugging Makefiles can be quite difficult? Well, it can
be!

And unfortunately our pattern matching options seem to be limited; we don’t
have regular expressions in our toolkit. So I had to use multiple pattern-match
rules for my PDF file outputs, where the % matches only on the filename portion
of the file path:

$(DEST_ROOT_DIR)2019/pdf/%.pdf : $(MD_SRC_ROOT_DIR)2019/%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

$(DEST_ROOT_DIR)2020/pdf/%.pdf : $(MD_SRC_ROOT_DIR)2020/%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

$(DEST_ROOT_DIR)2021/pdf/%.pdf : $(MD_SRC_ROOT_DIR)2021/%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_PDF_OPTIONS) -o $@ $<

There may be a more concise way to handle this, but this is working fine for
now.

7

Note that the special variables: $@ and $< mean, respectively, the target and
the predecessor, that matched the left and right side of the rules.

$(DEST_ROOT_DIR)index.html : $(MD_SRC_ROOT_DIR)index.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_HTML_OPTIONS) -o $@ $<

Then I can supply a pattern rule:

$(DEST_ROOT_DIR)%.html : $(MD_SRC_ROOT_DIR)%.md
$(PANDOC) $(PANDOC_OPTIONS) $(PANDOC_HTML_OPTIONS) -o $@ $<

This rule will match on file paths that match the destination and source root
directories with anything in between these directories and the file suffixes. The
% character must match the same string of characters on both the left (target)
and right (predecessor) side. So a target of:

~/Documents/sites/writing/the_coffee_underachiever/2019/filename1.html

and a predecessor of:

./md/2019/filename1.md

will result in the command under this rule being executed, to generate the target
from the prececessor, and the whole point of make is to only run what needs to
be re-run if a predecessor has been changed more recently than its associated
target.

I haven’t really shown how I handle the images, but essentially I just copy all
the matching JPEG files from the source into the destination with a simple rule
that uses the cp command:

$(DEST_IMG_DIR)%.jpg : $(IMG_SRC_ROOT_DIR)%.jpg
cp $< $@

In the future I might create image subdirectories like I do with with my PDF
subdirectories, but that shouldn’t be hard to change.

Defining Makefile Goals

Now, here’s how to define goals. The rules are a bit obscure here. Invoking
make with no goal will not always do what you want, so we need to define an
all target and make it so that the default is set to match this target. I also
know that it takes a very long time to generate all the PDF files, so I don’t want
the usual make clean command to remove them. I want to make it so make
pdfclean removes them instead. That will help make it so I don’t accidentally
make it so I have to regenerate all the PDFs, which might require a half-hour or
more, unless I’ve changed a predecessor.

The .PHONY goal is slightly difficult to explain, but essentially, the parameters
to make can be used to specify a target filename or filenames. This works fine
unless we have a filename that conflicts with our goal. To avoid this possibility,
we declare these targets as .PHONY, meaning that they define goals and not

8

actual target files. This elaborate workaround wouldn’t have been necessary
if make supported a more modern set of command-line options, like make
–goal=html or make –target=index.html.

.PHONY: all imagefiles htmlfiles pdffiles \
imageclean htmlclean pdfclean clean

.DEFAULT_GOAL := all

all: imagefiles htmlfiles pdffiles

imagefiles: $(DEST_IMG_DOCS)

htmlfiles: $(DEST_HTML_DOCS)

pdffiles: $(DEST_PDF_DOCS)

imageclean:
rm $(DEST_IMG_DOCS)

htmlclean:
rm $(DEST_HTML_DOCS)

pdfclean:
rm $(DEST_PDF_DOCS)

clean: imageclean htmlclean

The goals can consist of both targets and commands. Building the PDF target
processes specifies the PDF targets. Cleaning the PDF targets does not attempt
to build any targets, but executes the rm command on all the PDF targets.
Goals can refer to other goals.

Creating Directories: the Simple Way

I’ve left off a useful step. Given what I’ve shown you so far, you’d have to
manually create the target subdirectories. We can use make to do that for us,
but doing it the right way complicates the Makefile a bit.

We could just add some mkdir commands to our existing goals, using the -p
option, which makes it so no error is generated if the directory already exists:

html: $(DEST_HTML_DOCS)
mkdir -p $(DEST_ROOT_DIR)2019/
mkdir -p $(DEST_ROOT_DIR)2020/
mkdir -p $(DEST_ROOT_DIR)2021/

This requires some overhead every time make is run with this goal. It’s pretty

9

insignificant in this case, but to do it the right way, so that it doesn’t send
unnecessary commands, you use “order-only prerequisites.”

Creating Directories: the Idiomatic Way

Let’s add a rule to indicate that the image files targets are dependent on the
image directory:

$(DEST_IMAGE_FILES): | $(DEST_IMAGE_DIR)

Note that there’s some new syntax here. Prerequisites mentioned in a rule to the
right of a vertical bar character are “order-only prerequisites.” They are checked
to see if they exist, but their time stamps are not checked to determine if they
are newer than the target. It makes sense to use this kind of prerequisite for
directories, whose time stamps are updated whenever something in the directory
changes. If we didn’t do this, we could get rules re-triggered when both a file
time stamp and its containing directory time stamp are updated.

Now we have a rule to make the image directory. Since it only runs if the
order-only prerequisite image directory is missing, we don’t need to supply the
p option to mkdir.

$(DEST_IMAGE_DIR):
mkdir $(DEST_IMAGE_DIR)

The imagefiles goal just expands to all the image file targets:

imagefiles: $(DEST_IMAGE_FILES)

Now we have similar sets of prerequisites for our HTML output directories. The
order-only prerequisites are expanded from a variable DEST_HTML_DIRS
that I’ve defined to contain the three destination directories.

$(DEST_ROOT_DIR)2019/:
mkdir $(DEST_ROOT_DIR)2019/

$(DEST_ROOT_DIR)2020/:
mkdir $(DEST_ROOT_DIR)2020/

$(DEST_ROOT_DIR)2021/:
mkdir $(DEST_ROOT_DIR)2021/

$(DEST_HTML_FILES): | $(DEST_HTML_DIRS)

htmlfiles: $(DEST_HTML_FILES)

Things are a bit more complex for the PDF files, since the PDF subdirectories
exist inside the HTML directories. This means I want to specify that making
the destination PDF files depends on the destination PDF directories, and
also specify that making the PDF directories depends on making the HTML

10

directories. If there’s nothing in the destination root directory, when I run make
pdffiles, these rules will result in make creating the HTML directories first,
then the PDF subdirectories, then the PDF files.

Note that if the HTML directories have already been created, make will only
create the PDF subdirectories, then the PDF files. If both sets of directories
exist, then make will only create the PDF files themselves.

Why are there three targets for the PDF subdirectories? Well, that makes it
easier to reliably handle cases where one or two of the three subdirectories is
missing, without generating errors.

$(DEST_ROOT_DIR)2019/pdf/:
mkdir $(DEST_ROOT_DIR)2019/pdf/

$(DEST_ROOT_DIR)2020/pdf/:
mkdir $(DEST_ROOT_DIR)2020/pdf/

$(DEST_ROOT_DIR)2021/pdf/:
mkdir $(DEST_ROOT_DIR)2021/pdf/

$(DEST_PDF_DIRS): | $(DEST_HTML_DIRS)

$(DEST_PDF_FILES): | $(DEST_PDF_DIRS)

pdffiles: $(DEST_PDF_FILES)

Cleaning Up Directories

That just leaves our goals to clean things up, which shouldn’t be too hard to
understand now. Since the Makefile will properly build any needed directories,
the imageclean target just removes the whole image directory rather than just
the files inside it:

imageclean:
rm -rf $(DEST_IMAGE_DIR)

For the htmlclean target, I don’t actually want to remove the directories, because
they might contain PDF files. Rebuilding the PDF files is time-consuming, so
we don’t want to do it unless the pdfclean goal was specified.

htmlclean:
rm $(DEST_HTML_FILES)

For the pdfclean target, we can remove the PDF subdirectories.

pdfclean:
rm -rf $(DEST_ROOT_DIR)2019/pdf/ \

$(DEST_ROOT_DIR)2020/pdf/ \
$(DEST_ROOT_DIR)2021/pdf/

11

You might notice that the way I’ve implemented the clean commands means
that I’ll never actually delete the directories 2019, 2020, and 2021 under
the destination root directory, once they’ve been made. There are ways to
conditionally remove directories only if they are empty, but they seem quite ugly
to me and depend on shell commands, so I’m not going to bother with that. I
can live with some leftover empty directories.

The New Workflow

So, now I’ve got a Makefile. Now what?

Well, this means that whenever I make changes in the source files, I can just
execute make in the Visual Studio Code terminal window and it does only
the minimal amount of work required to bring the targets up to date. The
staging directory is local to the machine I’m working on — today it’s a laptop,
yesterday it was Melchior, one of the NUCs. I don’t worry about backing up
the contents of the staging directories, since all the files are generated from the
version-controlled source files on the server.

Finally, when I am satisfied with the generated HTML and PDF files, I can push
them up to our web server with rsync. I’m going to save that topic to explain
another day, since it involves SSH keys.

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

12

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	The Mac-Free Workflow
	The Basics of make
	My make Use Case
	Defining My Variables
	Creating My Target File Lists
	Generating Targets with Pandoc
	Defining Makefile Goals
	Creating Directories: the Simple Way
	Creating Directories: the Idiomatic Way
	Cleaning Up Directories
	The New Workflow

