
Fixed Point Math with AVR-GCC

Paul R. Potts

October 2016

Embedded C
I recently had reason to do some non-integer math on a small microcontroller,
a member of the Atmel ATtiny series. There is no floating-point hardware. It
is possible to do some floating-point math using library functions, but they
will certainly eat up an enormous amount of the available program space, and
will not be speedy. So there is an incentive to avoid using floating-point math
altogether, if possible.

So, I began looking into fixed-point math. It is always possible to roll your own
code for this kind of thing, but I thought I would see if I could take advantage of
existing, debugged library code first. I found some free software libraries online,
but it was not very clear how to use them or whether they would fit on the
ATtiny chips.

I discovered that there is, in fact, a standard for fixed-point types in C. It has
not been widely adopted. Like the C standard itself it is a little loose in parts,
in that it doesn’t dictate the numeric limits of types, but rather specifies a range
of acceptable sizes. And it turns out that my toolchain supports this standard,
at least in part.

I won’t try to describe everything covered in the Embedded C document. I’ll
spare you my struggle trying to find adequate documentation on how to do certain
things in an implementation that doesn’t implement everything in Embedded C.
Instead I will try to do something more modest, and just explain how I managed
to use a couple of fixed-point types to meet my specific needs.

You can find more information on the Embedded C standard here.

The actual Embedded C standards document in PDF form can be found here
(note: PDF link).

At the time of this writing, this seems to be the latest version available, dated
April 4, 2006. The document indicates a copyright, but unlike the C and C++
standards, it looks like you can download it for no cost, at least at present.

1

https://en.wikipedia.org/wiki/Embedded_C
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1169.pdf

avr-gcc
The compiler I’m using is avr-gcc. My actual toolchain for this project is Atmel
Studio version 7.0.1006. Atmel Studio is available for download at no cost. The
avr-gcc toolchain that Atmel Studio uses under the hood is available in other
toolchains and as source code. I’m not going to try to document all the ways
you can get it, but you can find out more here.

As I understand it, these Embedded C extensions are not generally available in
other versions of GCC.

The Basics of Fixed Point Types in Embedded C
I’m assuming I don’t have to go into too much detail about what fixed-point
math is. To put it briefly, fixed point types are like signed or unsigned integral
types except there is an implicit binary point (not a decimal point, a binary
point). To the left of that binary point, the bits indicate ascending powers of
two, from 20 up: 1, 2, 4, 8, etc. To the right of that binary point, the bits
indicate fractional powers of two, from 2-1 up: 1/2, 1/4, 1/8, etc.

The Embedded C extensions for fixed-point math came about, I believe, because
many microcontrollers and digital signal processors have hardware support for
fixed-point math. I’ve used DSPs from Motorola and Texas Instruments that
offered accumulators for fixed-point math in special wide sizes, such as 56 bits,
and also offered saturation arithmetic. Using these registers from C required
special vendor-specific compiler support. The idea was that if programmers
had a standardized way to access this functionality, using Embedded C types,
they would have a better shot at writing portable code; on platforms without
hardware support, fixed-point math could be implemented using relatively simple
library functions.

There are a couple of basic approaches to these types mentioned in the standard.
There are fractional types, indicated with the keyword Fract, with values
between -1.0 and 1.0, and types that have an integral part and a fractional part,
indicated with the keyword Acum. It is expected that implementations will
give these aliases, like fract and accum, but I think the authors did not want
to introduce potential name clashes with existing code.

The standard specifies the minimal formats for a number of types. For example,
unsigned long accum provides a minimum of 4 integer bits and 23 fractional
bits. On the platform I’m using, unsigned long accum actually provides 32
integral bits and 32 fractional bits, aka “32.32.” It maps to an underlying type
that can hold the 64 bits. In this case, that underlying type is unsigned long
long.

2

https://gcc.gnu.org/wiki/avr-gcc

Accumulator Types
For my algorithms, I don’t have much interest in the Fract types, and I’m going
to use only the Accum types. I would have more interest in Fract types if
there were standard ways available to multiply an Accum by a Fract. If that
existed, I could use a Fract type as a scale factor to apply to a large-ish integer
in Accum representation. For example, let’s say I want to generate an unsigned
binary value to send to a DAC that accepts 18-bit values. I could create a value
of an Accum type that represents the largest 18-bit value, and scale this by a
Fract value indicating the fraction to apply. The advantage of this approach
would be, I thought, that I would use types that were only as wide as I needed,
resulting in less code. However, since this does not seem easy or convenient
to do, in my own code I am using only Accum types at present. In fact, I’m
using only unsigned Accum types, specifically, the aforementioned unsigned
long accum, but also unsigned accum, which gives me a 16-bit unsigned
integer value and a 16-bit fractional value (aka “16.16”) whose underlying type
is unsigned long (32 bits).

Fixed Point Constants
There are new suffixes to allow specifying fixed-point constants. For example,
instead of specifying 15UL (for unsigned long), one can write 15UK for an
unsigned accum type, or 15ULK for an unsigned long accum type. One
can specify both the integer and fractional part, for example 1.5UK. On this
platform, 1.5UK assigned to a variable of unsigned accum type will produce
the 16.16 bit pattern 0000 0000 0000 0001 1000 0000 0000 0000 (hex
00018000), where the most significant 16 bits represent the integer part, 1, and
the least significant 16 bits represent the fractional part, 0.5.

Accuracy
For our purposes we will mostly be using the integer results of fixed-point
calculations. We don’t need to use the FX_FULL_PRECISION pragma;
error of 2 ULPs for multiplication and division operations is fine.

A Very Simple Example
Here’s a small program that shows a very simple calculation using unsigned
accum types. I created a simple project in Atmel Studio that targets the ATtiny
841 microcontroller, which has 512 bytes of SRAM and 8 KiB of flash memory
for programs. Today I’m not actually connecting the debugger to hardware. It
is possible to configure the project’s “Tool” settings to use a simulator, instead
of a hardware debugger or programmer.

#include <avr/io.h>
#include <stdfix.h>

3

static unsigned accum sixteen_sixteen_half = 0.5UK;
static unsigned accum sixteen_sixteen_quarter = 0.25UK;
static unsigned accum sixteen_sixteen_scaled;

int main(void)
{

sixteen_sixteen_scaled =
sixteen_sixteen_half * sixteen_sixteen_quarter;

}

We can watch this run in the debugger. In fact, this is the reason for including
the volatile keyword in the variable declarations — I want to be able to see
what is happening, and without volatile, even with optimizations turned off, the
compiler will still aggressively put variables in registers and avoid using memory
at all if it can.

While I don’t seem to be able to use watches on these variables, as I can when
using a hardware debugger and microcontroller, I can see the values change
in memory as I step through the program. The values are in little-endian
form. Translating this, I can see that sixteen_sixteen_half shows up as
0x00008000, sixteen_sixteen_quarter shows up as 0x00004000, and the
result of the multiplication operation, sixteen_sixteen_scaled, is assigned
0x00002000, representing one-eighth.

Code Size
If I bring up the Solution Explorer window (via the View menu in Atmel Studio),
I can take a look at the output file properties by right-clicking. The generated
.hex file indicates that it is using 310 bytes of flash. What happens if I scale
up to a larger type? Well, if I change my unsigned accum declarations to use
unsigned long accum, suddenly my flash usage goes up to 2776 bytes. That’s
a lot given that I have 8192 bytes of flash, but it still leaves me quite a bit of
room for my own program code.

A Few Techniques
Let’s say we want to scale a value to send to a linear DAC. Our DAC accepts
18-bit values. That means we can send it a value between 0x0 and 0x3FFFF.

To work directly with an Accum type that will represent these values, we have to
use an unsigned long accum. To declare an unsigned long accum variable
that is initialized from an unsigned long variable, I can just cast it:

unsigned long accum encoder_accum =
(unsigned long accum)encoder_val;

We can also cast from a shorter integral type — for example, from an unsigned
accum — and get the correct results. Beware of mixing signed and unsigned

4

types! (As you always should, when working in C.)

We can do math on our unsigned long accum types using the usual C math
operators.

Let’s say we want to get the unsigned long accum value converted back to an
integral type. How would we do that? We use bitsulk to get the bitwise value
(this is actually just a cast operation under the hood). Because we’re going to
truncate the fractional part, I add 0.5ULK first.

unsigned long val =
bitsulk(encoder_accum + 0.5ULK) >> ULACCUM_FBIT;

If we want the remainder as an unsigned long accum, we can get it. Remember
that the fractional part of the accumulator type is in the range [0.0..1.0) (that is,
inclusive of zero, exclusive of 1). Note that the use of the mask here is not very
portable, although there are some tricks I could do to make it more portable,
but for now, I am more concerned about readability.

unsigned long accum remainder =
ulkbits(bitsulk(encoder_accum) & 0xFFFFFFFF);

The ulkbits and bitsulk operations are just casts, under the hood, so this boils
down to a shift and mask.

The Embedded C specification defines a number of library functions that work
with the fractional and accumulator types. For example, abslk() will give
absolute value of an unsigned long accum argument. There are also rounding
functions, like roundulk(). I have not actually had need of these. They seem
to be supported in avr-gcc, but so far I have not needed them.

I hope this very brief tutorial may have saved you some time and aggravation in
trying to use these rather obscure, but very useful, language features. Happy
programming!

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

5

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Embedded C
	avr-gcc
	The Basics of Fixed Point Types in Embedded C
	Accumulator Types
	Fixed Point Constants
	Accuracy
	A Very Simple Example
	Code Size
	A Few Techniques

