
Audiometer Simulation Project Summary

Paul R. Potts

March 1993

In my first “real” job out of college (not counting a stint doing word processing for
the Department of Anthropology), I worked for the University of Michigan’s Office
of Instructional Technology developing multimedia for teaching. The Audiometer
Simulation project was a collaboration with Dr. Paul Green of the Department
of Industrial and Operations Engineering. In 1993, as part of the process of
archiving some older projects, I wrote the text below, answering a template of
questions we asked all the project developers to use. I was not brief. Oh well.

Not much remains of the Audiometer Simulation project that can easily be
demonstrated today, as it ran on old Macintosh II family computers and used
HyperCard. It may be possible, though. I have previously used SheepShaver to run
an emulated old MacOS environment on MacOS X on Intel, which allowed me to
run old MacOS software including Microsoft Word and ResEdit, and access old
files on a mounted disc image, but I have not looked into doing something similar
on M-series Macs like my current MacBook Air M2. I have also previously had
some success sending an old personal HyperCard stack to the Internet Archive
and getting it to run on their online emulated HyperCard player, although it
tends to crash and freeze up. I would not expect the emulation of the System
7 sound driver and Macintosh II sound hardware to work smoothly on either
platform.

1. Describe the history of the project in brief.

The project began in December of 1990 and was the first development project
that Paul Potts was involved in. Experimental prototypes were created during
the first few months. The early attempts involved trying to work with short
clips of digitized sine waves, but these could not be played in a loop from within
Hypercard without producing a repeated clicking sound.

Paul Potts decided to write an external command in THINK C which would
provide generalized support for sound without Hypercard’s overhead. This
was done in the form of a small command interpreter and set of sound object
classes designed to encapsulate the tricky Sound Manager code and provide
good error-checking. This involved several new techniques, including: writing a
“persistent” XCMD that remained in the heap between calls; using the ANSI-A4
library to support standard library functions like sprintf() and sscanf() within a

1



code resource; using THINK C’s object-oriented extensions; and writing a small
tokenizer.

At the time System 7 beta drafts were becoming available, and documentation
on the Sound Manager in technical notes, Inside Macintosh, and the drafts of
Inside Macintosh volume VII was incorrect and contained a number of errors.
This led to delays and difficulties. Eventually technical support came from Jim
Reekes, the Apple programmer who designed the Sound Manager. An early
version of the code that was used for quite some time was very unstable because
of a bug which caused it to allocate a sound channel in low memory. The Sound
Manager does not provide any error-checking for mistakes such as this. The
code would function for two or three times and then the Macintosh would crash
spectacularly with lots of noise and garbled video. This was eventually traced to
a single failure to correctly initialize a C pointer.

Various other technical challenges were overcome and bugs were worked out
of the code and the deployment systems. Here is an example of a bug: on
Dr. Green’s Macintosh with a Radius two-page display, the audiometer window
would be drawn but sized too small, and it could not be resized to its full size.
This turned out to be a conflict between Hypercard and the system extension
to provide support for the full-screen display. Memory was allocated for the
window when the application started up, and then the Radius extension placed
a non-relocatable block on the application’s heap, which would not allow the
memory block to grow when the window was resized. Hypercard would not
deallocate and reallocate the window record. This was eventually solved by
installing a later version of the Radius extension which eliminated the problem.

The code to provide the logic for the audiometer was written in the Hypertalk
scripting language. A second stack which ran in another window was used
to graph the user’s performance. The first working version of the Hypertalk
code was not well-tested and was extremely slow, but functional. Most of the
difficulty in the Hypertalk code was in the code that teaches the student the
proper technique for administering a hearing test. The scripts that simply allow
the XCMD to work like a standard audiometer are relatively simple. Analyzing
every possible move the student can make for legality and providing appropriate
instructions at every step proved much more difficult.

Draft versions of the XCMD code were distributed via the Internet to various
parties interested in debugging and testing, including to Jim Reekes, Apple
Sound Manager author. Reekes made a number of suggestions for improvements
to the sound code. Most of these were not implemented because they were not
necessary for the project, but one, making the sound play asynchronously, was
implemented for better compatibility with other applications and future versions
of the system software.

A stable version of the XCMD was ready for testing in October 1991. Students
had the opportunity to use the software in class. The pilot deployment was
considered to be a useful learning experience but not a useful teaching experience.

2



A number of problems cropped up with the scripts. Students considered the
execution of the program to be much too slow. The machines provided had only
1 megabyte of RAM. At the last minute a second megabyte was installed, but
running a large Hypercard stack in two megabytes could cause problems. Speed
was very poor in part due to the fact that when Hypercard runs low on memory,
it jettisons compiled Hypertalk code, and then must recompile it “on the fly”
when it is called again. This can result in long pauses at run-time.

At the end of 1991, System 7 had just been released. Paul Potts spent some
time learning about AppleEvents and conducted an experiment to demonstrate
the feasibility of controlling another program remotely from a Hypercard stack.
He placed the resuable audiometer code module into an application shell written
using THINK C, and ran six copies on a networked lab of Macintoshes, then
used a single Macintosh running a Hypercard stack to control sound play on
the remote Macintoshes. The performance was much too slow to use for the
audiometer project, but AppleEvents may play an important part in future OIT
projects.

Another source of difficulty with the hardware was in the cabling and calibration
process. The cables provided were extremely touchy and would occasionally stop
working in the middle of a hearing test. Also, it was determined that calibrating
the audiometer could not be achieved with electronic devices such as voltmeters
because of the very low voltage levels produced by extremely quiet sounds. These
had to be estimated by ear.

In the summer of 1992 the audiometer program was rewritten using all new logic
as a functional heirarchy and state machine, broken into short script modules.
This has been a great aid in locating bugs in the script code. Many of the problems
with the script code would not have occurred with another language such as C or
Pascal. Hypertalk does not provide language constructs for supporting abstract
data types, data encapsulation, separate compilation, enumerated types, and
other features. Many of these were “simulated” in Hypertalk to improve the
design and efficiency of the program. In general these simulated features worked
well, but it proved difficult to properly debug the individual scripts, even though
they were broken into small parts, due to the complex interactions between
scripts that stem from a lack of proper data encapsulation. Many scripts were
tested and optimized to improve the speed.

In October of 1992 the program was used again with several classes. This time
sufficient memory and computing horsepower was available, although there were
still some difficulties with the cables. The software performed well. Only one
problem was found, and quickly corrected during the class. The speed was
improved, although still somewhat sluggish. It became clear after class use that
the biggest bottleneck was the process of switching between the graphing stack
and audiometer stack.

In November and the first three days of December the stack was altered to
support a larger window, and the graphing was incorporated directly onto the

3



page with the audiometer simulation. This improved speed significantly. A small
change to the logic requested by Paul Green resulted in a number of new bugs
and pointed out to me the difficulty of attempting to use techniques that I use
for traditional software without language constructs to adequately support them.
Some changes in messages, card layout, and user interface were also introduced.

A completed and revised version, 1.2, was finished on December 3rd.

2. How has the project been used in an instructional setting?

In October of 1991 and 1992, the stack was provided running on two comput-
ers alongside two traditional audiometers. Students were required to use the
audiometers both as subjects and as testers.

Students found the simulated audiometer difficult to use, slow, and somewhat
unstable. They were interested in the concept of the project and did manage to
learn the basic technique of conducting a hearing test, but it was clear that more
work needed to be done before the computerized audiometer could provide true
enrichment of the learning experience. The student comments reflected both
their interest in the technological approach and their frustrations with it.

In the following year, the audiometer software performed much better. There
were a few difficulties with the cables, but for the most part the student experience
was quite positive. The evaluations returned by students were almost uniformly
positive.

3. What is the status of the project vis-a-vis the current agreement for joint
development?

The audiometer in its current stage has met the objectives of the agreement for
joint development, and both parties (Paul Green and Paul Potts) are reasonably
satisfied with the software.

4. Are there remaining bugs or known problems with the software? If so,
describe.

There are no known bugs with the current version of the software. However, the
software is still somewhat difficult to use properly because of the necessity for
custom-built hardware (the audio cables) and calibration by ear. The accuracy of
the tones could use improvement, although I don’t believe that any improvement
is possible using current Macintosh sound output.

5. Describe any features which were left out of the software or which could
be added if it was developed further.

If this is developed further, it would be helpful to translate the script code into
a high-level language such as C++ or THINK C with the class library. Using
a traditional language such as C would allow for true abstraction of the data
types, improved debugging facilities, and improved speed. I believe that by the
time the project was rewritten and the script code debugged, the advantages in
speed and simplicity gained in writing the script code in Hypertalk had been

4



lost. Using C or C++ with a good library for the user interface would now be
an effective approach.

6. If evaluation was performed, what was the overall result?

Evaluation was performed in October of 1991 and October of 1992. The software
satisfaction survey form was used. These completed forms are included with the
project archive. The general trend was that in the first use, users were interested
in the project but very frustrated with the speed problem and errors. The second
batch of evaluations were uniformly positive and rated the software as beneficial
to the learning experience.

Normally I place a note here indicating that the content above is available under
a Creative Commons license. In this case, as I was working for the University of
Michigan when I wrote it, I believe the content above is technically protected
under Copyright by the Regents of the University of Michigan. I have not sought
permission to include this material in my online portfolio. I have placed it here
for the purpose of preserving one very small piece of information about the
history of computing in education, and my role in that history.

5


