
Asynchronous Programming with Qt

Paul R. Potts

October 2019

I recently became bogged down for a couple of days by problems with an Windows
application, written in C++, using the Qt framework. I needed to get a pretty
simple thing working. The Windows application sends packets of data to the
microcontroller over a couple of different possible interfaces. You can plug in a
USB cable, and send the data using a library call to the driver for the chip on
the other end, which converts from USB on one side to old-fashioned serial on
the other. Or if you have an adapter from USB to RS-232 or an older computer
with an honest-to-God built-in RS-232 port, you can use that.

And so, it’s time to talk about asynchronicity.

Asynchronicity

The USB connection was working perfectly. I could reliably send firmware
updates to the microcontroller that way. But the serial side, which uses a C++
class called, unsurprisingly, QSerialPort, was not working reliably at all. So I
had some debugging to do.

Sending data with this class is pretty straightforward. You just call one method
to send a chunk of data. The call doesn’t block — that is, the method call
doesn’t wait until all the data has gone out before returning. Computers run
much faster than serial ports do, so it doesn’t really make sense to stop your
whole program, or even one thread of it, while the data is being slowly clocked
out onto the wire.

That makes things a bit tricky, though, because I actually want my code to stick
with a rigid “call-and-response” plan. I want to send the packet, and wait for
the answer before I send the next packet. But the call to receive data also does
not “block,” at least not in the usual sense, and again, you don’t usually want it
to, since it brings your thread of execution to a halt. Depending on how your
program is structured, that might also mean that the graphical user interface
would grind to a halt, too, and that’s bad.

So there are two approaches described in the available sample code, synchronous
(blocking) and asynchronous (non-blocking). “Asynchronous” means “not syn-
chronized” with your code; it means that the work happens behind the scenes,

1

https://en.wikipedia.org/wiki/Qt_(software)

and it will be done at some point, and so you have to be ready to handle some
kind of notification that tells you when it is done.

Qt is a very old framework, and it came into existence before modern versions
of C++ existed, and when computers were much slower, and it wasn’t so
commonplace for applications with graphical user interfaces to have multiple
threads of execution. So the QSerialPort class’s way of supporting asynchronous
sending and receiving is kind of weird, and not very much like the way most
modern libraries do it.

A more modern library would, typically, let me call a function to send data,
with parameters that included a pointer to a buffer of data to send, a count of
the number of bytes in the buffer, and a timeout value, typically in milliseconds.
When you make a call like this, you’re telling the operating system or library
or whatever “hey, here’s some data; send it out the serial port. Wait for up to
25 milliseconds. If it takes longer than that, stop and let me know.” Then that
call would return some sort of error code letting you know whether is succeeded
or not. This call would “block,” but you wouldn’t typically care, because your
application would be broken into threads, so that if one thread blocked, the
others would keep running, and parts like the graphical user interface would not
freeze up. My application is already broken into threads; this code is running in
a thread to do serial communication by either RS-232 or USB, and it is separate
from the thread that runs the graphical user interface.

Anyway, that’s one way to send data. It’s synchronous, but that doesn’t really
matter, because only one thread waits for the data to go out. Receiving can be
done in a similar way: provide the number of bytes you expect to get, a pointer
to a buffer big enough to hold those bytes, and a timeout. One thread waits for
data to come in, but the others keep going.

The relevant part of Qt’s synchronous serial receive sample code looks like this:

if (serial.waitForReadyRead(currentWaitTimeout)) {
QByteArray responseData = serial.readAll();
while (serial.waitForReadyRead(10))

responseData += serial.readAll();

const QString response = QString::fromUtf8(responseData);
emit this->response(response);

} else {
emit timeout(tr("Wait read response timeout %1")

.arg(QTime::currentTime().toString()));
}

If you squint, you can kind of see how that looks like the process I described,
except that you can’t specify how many bytes you want. In fact this example
doesn’t guarantee you’ll get any particular number of characters. That’s fine if
you have an ongoing stream of characters that might trickle in at any time, and
you just want to log them, or something like that, and then stop if you haven’t

2

gotten any for a while. But that’s not at all how my application works. I need
to get my packet with its fixed number of bytes, because the contents of the
packet will tell my code what to do next.

Typically, libraries also provide a way to read and write data asynchronously.
This is typically done using some kind of callback — the library will “call back”
to a function in your code, and that function needs a way of signaling to another
part of your code that the data was sent, or received, or that it didn’t work.

In that case, you might want the code in your class object to wait on a semaphore;
that’s the classic “computer science-y” thing to do. Your code waits for a
“resource” to be acquired. A semaphore is a flexible mechanism that can be used
to manage any kind of resource. In this case of reading data, the “resource”
is the packet of data we are waiting for. The called-back function “gives” the
semaphore, and my main thread of execution tries to “take” the semaphore.
There’s a timeout. This is a classic consumer/producer problem. Qt provides a
class called QSemaphore that seems like it ought to be perfect for this. So I
implemented some code kind of like the example below. (This is not the real
code; it’s a simplified excerpt to illustrate the concept).

First, we need a method that gets called when bytes are ready to read. This
method then receives all the bytes that are currently available, and appends
them to another byte array holding all the bytes I’ve accumulated so far. When
it has enough bytes, it “releases” the semaphore, with a parameter of one, which
in our case indicates that one packet of reply data is now available. The “ball”
is now in the consumer’s court.

void SendFileWorker::handleReadyRead()
{

QByteArray bytes = m_serial_port_p->readAll();

m_rx_bytes_a.append(bytes);
if (m_rx_bytes_a.count() == REPLY_PACKET_BUFFER_SIZE)
{

m_reply_sem.release(1);
}

}

Next, we have the method that waits to “take” the semaphore. When we do this,
conceptually this “consumer” code now has taken one “resource,” one packet
of reply data, and the “producer” code no longer has a resource, until another
packet comes in:

bool SendFileWorker::receive_rs232_reply(unsigned char * data_p)
{

bool ret_val = m_reply_sem.tryAcquire(1, 250);
if (true == ret_val)
{

(void)std::memcpy(data_p, m_rx_bytes_a.constData(),

3

REPLY_PACKET_BUFFER_SIZE);
m_rx_bytes_a.truncate(0);

}

return ret_val;
}

That seems so simple that it couldn’t not work, right? That’s what I thought!
But, in fact, it didn’t work at all. The code always waited for the semaphore
until it timed out. The data was coming into the serial port, but my code was
never receiving it.

This is because QSerialPort doesn’t really support asynchronous sending and
receiving using callback functions the way they are usually implemented. Qt uses
a somewhat antiquated mechanism called “signals and slots.” Signals and slots
are very useful ways to hook up all kinds of messaging between different pieces
of code, and in most cases sending an object a signal is pretty much equivalent
to calling a method of the object; slots are in fact just methods.

But not just like calling a method of the object.

The signals that QSerialPort provides to indicate that bytes are ready to
receive are really sent when an event loop detects a condition and triggers the
call to the “slot” method. And that only happens if the event loop runs. And
the event loop runs synchronously. Doing anything that blocks the thread your
Qt object is running in, such as waiting to take a semaphore, will bring the
event loop mechanism to a halt, and so that code that is waiting to give the
semaphore when it is called will never be executed.

It might seem like the logical thing to do is to put the QSerialPort object on
its own thread, but for various reasons this doesn’t really solve the problem.
Strangely, QSemaphore objects aren’t really made to send messages between
Qt threads. The fundamental method that Qt provides for this is… signals
and slots. And your thread won’t get those signals if it is is sleeping on a
QSemaphore, or some kind of queue, or any of the “classic” concurrency
programming tools that people who have studied programming formally would
expect to use for this purpose.

The sample code available to describe how to use QSerialPort does a really,
really poor job of explaining this. The asynchronous examples are very contrived
and simplified and don’t show how to do something that ought to be quite simple:
sending a packet of serial data, and waiting on a reply. A quick search of the
message boards will reveal that a lot of people have trouble using QSerialPort
to receive data the way they want it to, and that there is a distinct lack of clear
explanations of how to do it.

I got it working, finally, by using something called a local event loop, and it
works great. I hook up my signals and slots like so:

connect(m_serial_port_p,

4

SIGNAL(errorOccurred(QSerialPort::SerialPortError)),
this,
SLOT(handleError(QSerialPort::SerialPortError)));

connect(&m_rs232_rx_timer,
SIGNAL(timeout()),
&m_rs232_rx_event_loop,
SLOT(quit()));

connect(m_serial_port_p,
SIGNAL(readyRead()),
&m_rs232_rx_event_loop,
SLOT(quit()));

My QSerialPort object’s errorOccurred signal, which includes an error pa-
rameter, is now hooked to my object’s handleError slot, my QTimer object
timeout signal is hooked up to my local event loop’s quit slot, and my QSeri-
alPort object’s readyRead signal is also hooked up to my local event loop’s
quit slot. I have to use a timer, because that readyRead signal is vague; it
just means “at least one byte is available for reading.” And I have to keep track
of my own timeout condition. I also have to handle retries until I either have
the number of bytes I expect, an overflow condition, or I’ve run out of retries.
This is quite a bit uglier and more complicated than just making a single call
to wait for a certain number of bytes or a timeout, but it works with perfect
reliability now. My receive function now looks something like this:

bool SendFileWorker::receive_rs232_reply(unsigned char * data_p)
{

bool done = false;
bool overrun = false;
int tries = 0;
int max_tries = 5;
QByteArray packet;

m_rs232_rx_timer.start(50);

do
{

m_rs232_rx_event_loop.exec();

if (m_rs232_rx_timer.isActive())
{

/*
If the event loop exited and the timer is still
running, we must have gotten the readyRead() signal.

*/
packet += m_serial_port_p->readAll();

int len = packet.length();

5

if (len > REPLY_PACKET_BUFFER_SIZE)
{

overrun = true;
}
else if (len == REPLY_PACKET_BUFFER_SIZE)
{

(void)std::memcpy(data_p, packet.constData(),
REPLY_PACKET_BUFFER_SIZE);

done = true;
}

}
else
{

tries += 1;
}

} while ((false == overrun) &&
(false == done) &&

(tries <= max_tries));

return done;

}

I can do something similar using the synchronous methods, using WaitFor-
ReadyRead() instead of using a slot in my own code, but it isn’t much simpler.
WaitForReadyRead() must be allowing my main thread’s event loop to run. I
tried to take a look at the implementation, to see if it gave me any insight, but it
calls another method, and then another, and then some sort of implementor class,
using the “pointer to implementor” idiom, also known as “pImpl,” and then that
implementor calls another method which was defined as a macro, which is a
pretty ugly and primitive thing to do in a framework written in C++. Searching
for that implementation crashed my text editor’s “find in files” function as it
tried to search through almost 250,000 files of Qt source code.

There’s a big difference between “theoretically, you can learn a lot from reading
the source code!” to actually being able to read and understand the source code of
a project like this, which contains hundreds, if not thousands, of developer-years
of work, and at this point, probably a non-zero number of developer-careers, too.

Sometimes you can learn a great deal from reading a framework’s source code.
The PowerPlant framework was written by one very smart guy and it was
incredibly readable. I really miss using a framework that was so simple and
clear. But Qt is not nearly as easy to understand. And what I am trying to do
isn’t really very complex or unusual, so the code to do it shouldn’t need to be
over-complicated.

Anyway.

6

It’s Time to Stroke My Long White Beard and Complain about Kids
Today

I first did event-driven programming around 1985, when I was learning how
to program the original Macintosh. Event-driven programming has a lot of
advantages on small and slow systems. But even on small microprocessors, like
the SAM4S2 chip I’m programming, which has only 64K of RAM and a clock
speed that is only a bit faster than the original Macintosh, I am accustomed to
using tiny operating systems like FreeRTOS that allow me to run multiple tasks
and communicate between them very easily, with seamphores and queues that
pretty much just work, with no surprises. The old event queue designs were a
hack that allowed very slow chips to behave almost like they were running fully
multi-threaded operating systems and applications; they aren’t really all that
useful when the chips are fast and it is easy to do things in more “computer
science-y” ways.

It’s actually really, really easy to write event-driven code using primitive multi-
threading constructs like semaphores and queues; FreeRTOS does a brilliant job
in showing just how this sort of thing can be done in a portable but very efficient
way.

I’ve used a lot of different C++ frameworks over the years: TurboVision, THINK
Class Library, the Microsoft Foundation Class Library, PowerPlant, the Object
Windows Library, and others I have no doubt forgotten; I’ve also used a number
of frameworks written for languages other than C++, like Dylan, NewtonScript,
and Java.

Qt has outlasted pretty much all of the frameworks I mentioned. One reason
is that it solves a lot of hard code portability problems. But this “clash of
civilizations” — of different programming paradigms, really — at the heart of
Qt is really making me wonder if there isn’t a better framework out there.

Could I find a framework for Windows programming that is more modern, more
consistent, and simpler, and not just bigger and more “modern?” (It would
be nice if it was cross-platform; that used to be one of Qt’s big selling points,
but it has become less important to me now that pretty much everyone we are
targeting with our products has access to a PC running Windows, and there
isn’t a good business case to be made for writing a Macintosh version).

I don’t think such a thing exists, unfortunately.

As always, this content is available for your use under a Creative Commons
Attribution-NonCommercial 4.0 International License.

7

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Asynchronicity
	It’s Time to Stroke My Long White Beard and Complain about Kids Today

