
A Teeny-tiny Operating System

Paul R. Potts

1987

In my sophomore year of college I took two interesting classes that helped “make
my bones” as a programmer. One was called Assembly Language, and one was
called Operating Systems. In the assembly language class we wrote a series of
assignments that culminated in writing a (simplified) assembler for the VAX
11/750, in VAX 11/750 assembly language. In the operating systems class, we
read Operating System Concepts, Second Edition by Peterson and Silberschatz
and studied the theory behind operating systems. But we also had a “practicum”

— we implemented an operating system.

Well, sort of. We weren’t Linus Torvalds writing Linux back then. We had
a small lab set up with Motorola 68000 “trainer” development boards, each
of which contained the same microprocessor that was in the original Apple
Macintosh. We used a cross-assembler that ran on the VAX 11/750 to build
68000 assembly-language code for this board, download it, and run it. There
was a little low-level “monitor” program in ROM on this board that made this
possible.

Why the 68000? We and our instructor were quite interested in the 68000 at
the time, as it was a very capable microprocessor, with a larger memory space
and wider data bus than the earlier 6502 used in the Apple II or 8088 used in
the original IBM PC. Our instructor Simon Tung was especially interested in
the illegal opcode exception-handling, as this was used by Apple to implement
the early Macintosh Toolbox. I vividly recall him drawing a diagram of the
exception-handling logic at the gate level.

The exception-handling logic provided a fast and efficient way to trigger an exit
from user code to privileged system code in ROM. This saved a lot of RAM by
keeping most of the toolbox code in ROM — remember, RAM was scarce and
expensive back then compared to ROM. But this mechanism worked by using
a jump table stored in RAM, which allowed code on disc to patch operating
system calls, both to fix bugs and to do other neat tricks. I would eventually
teach how to write a variety of programs for old MacOS in C and Pascal, and
that became a big part of my early career, but that’s another story.

We began with some very simple low-level functions, but the final assignment
was to put them together into a “teeny-tiny operating system.” It was a program

1

that ran a timer and read keyboard input using interrupts, launched a number
of tasks, and switched periodically between tasks. So we’d press a key, and the
program would start spitting out that character to the terminal at a specific
rate. We’d press additional keys, and it would start more tasks to do the same
thing with different characters at different rates. We could kill processes. This
functionality is what an operating system does. Of course, it’s not all a modern
operating system does.

I don’t recall all the details (it’s been almost 40 years, after all), but I recall
that I had my program working perfectly, with beautiful timing, but I screwed
something up, and I was never able to get the timing to work quite that well
again. Oh well. If you spot the bug, let me know!

Note that the web version of the code is a bit ugly, because my web page template
imposes a strict width restriction on preformatted text, which results in the ends
of some comments getting cut off (although you can scroll right to read them).
Until I can fix that, I recommend reading the PDF version of this file.

* Original filename: as3.3.src;
LLEN 120 ;ALIGN NICELY

**
*********** ASSIGNMENT 3 PART 3 FOR CS 256 BY PAUL POTTS
*********** THIS PROGRAM IMPLEMENTS UP TO 16 PROCESSES CALLED
*********** 'USER' WHICH SIMPLY PRINT OUT A SPECIFIC CHARACTER
*********** STORED IN THE PCB. THE DELAYS FOR NEW PROCESSES
*********** START OUT BEING 1000 UNITDELAYS OF .001 SECONDS,
*********** OR 1 SECOND. IN ORDER TO KEEP THE PROCESSES
*********** FROM OVERFLOWING EVEN A LARGE QUEUE THE SMALLEST DELAY
*********** ALLOWED MUST BE 5 UNITDELAYS. THE USER CAN CHANGE THE DELAY
*********** BY STRIKING '+' TO DOUBLE IT OR '-' TO CUT IT
*********** IN HALF WHILE THE PROCESS IS RUNNING. THE KEY
*********** '#' WILL TERMINATE EXECUTION OF THE PROCESS.
*********** THE SYSTEM STARTS OUT RUNNING NO PROCESSES AND GENERATING NO
*********** TIMER INTERRUPTS TO SWAP PROCESSES. PROCESSES ARE ADDED TO THE
*********** SYSTEM BY STRIKING KEYS OTHER THAN THE ONES MENTIONED ABOVE.
*********** THESE PROCESSES WILL CONTINUE TO CYCLE UNTIL THEY ARE KILLED.
*********** NOTE THAT IF THE TIME DELAY OF A PROCESS IS MADE SMALL ENOUGH
*********** IT WILL PRINT SEVERAL REPETITIONS OF ITS CHARACTER IN ITS
*********** TIME SLICE, SINCE IT WILL CALL "DISPLAY" SEVERAL TIMES
*********** BEFORE IT IS SWAPPED OUT.
**
* THE FOLLOWING ARE SYSTEM-DEPENDENT LABELS GIVEN TO THE SPECIAL
* REGISTERS OF THE 68000 BOARD
**

ACIAVECTOR EQU 4*29 ;VECTOR FOR ACIA INTERRUPT

2

TIMERVECTOR EQU 4*26 ;VECTOR FOR TIMER INTERRUPT
ALINEVECTOR EQU 4*10 ;VECTOR FOR A-LINE HANDLER
TCR EQU $10021 ;TIMER CONTROL REGISTER
TIV EQU $10023 ;TIMER INTERRUPT VECTOR
CPR EQU $10025 ;COUNTER PRELOAD AREA
ACIACS EQU $10040 ;CONTROL/STATUS REGISTER
ACIAD EQU $10042 ;DATA REGISTER
ACIAMODE EQU 15 ;THE MODE WANTED
QSIZE EQU 40 ;40 SPACES IN THE QUEUE
SRSTART EQU $2000 ;INITIAL SR OF EACH PROCESS
DELAY1 EQU 100 ;DELAY OF PROCESS=.1 SEC.
NEWSLICE EQU 125000 ;STARTING SLICE=1 SEC.

**

TOP ORG $1000 ;START HERE
JMP START ;BRANCH DOWN

TIMESLICE DS.L 1 ;START TIMESLICE AT 10 SEC.

**** THIS DEFINITION OF THE QUEUE DOES NOT USE INTERNAL LABELS BUT JUST
**** A POINTER TO THE WHOLE QUEUE. THUS, QUEUE POINTS TO THE HEAD OFFSET,
**** QUEUE+2 POINTS TO THE TAIL OFFSET, QUEUE+4 POINTS TO THE LENGTH, AND
**** QUEUE +6 IS THE FIRST BYTE OF THE QUEUE. THE QUEUE STORAGE TAKES
**** LENGTH OF QUEUE PLUS ONE BYTES, ALL BUT ONE OF WHICH CAN HOLD ACTUAL
**** DATA. THE EXTRA IS USED TO FIGURE OUT WHEN THE QUEUE IS FULL.

QUEUE DS.W 1 ;THE HEAD POINTER
DS.W 1 ;THE TAIL POINTER
DC.W QSIZE ;THE QUEUE LENGTH
DS.B QSIZE+1 ;THE LENGTH PLUS AN EXTRA

**
* PCOUNT HOLDS THE NUMBER OF ACTIVE PROCESSES, FROM ZERO TO 16
**

PCOUNT DS.B 1 ;NUMBER OF PROCESSES

**
* THIS IS THE STRUCTURE OF A PCB IN MEMORY:
*
* storage holds
* BYTE: ASCII ID CHARACTER FOR THE PROCESS
* BYTE: FOR FUTURE USE
* WORD: FOR HOLDING THE STATUS REGISTER

3

* LONGWORD: PC
* LONGWORD: D0
* LONGWORD: D1
* LONGWORD: D2
*
* TOTAL PCB: EACH TAKES 20 BYTES
*
**

PCBTOP DS.B 320 ;SPACE FOR 30 PCBS

PCBPOINTER DS.L 1 ;POINTER TO THE CURRENT PCB

* CODE TO ALLOW OR DISALLOW THE HANDLING OF INTERRUPTS

UNBLOCKINT MACRO
ANDI #$F8FF,SR ;ENABLE INTERRUPTS
ENDM

**

BLOCKINT MACRO
ORI #$0700,SR ;DISABLE INTERRUPTS
ENDM

**
* DISPLAY FORCES AN A-LINE EXCEPTION TO OCCUR, AND THE
* SYSTEM JUMPS TO THE CODE BELOW, AHANDLER, WHEN IT OCCURS.
**

DISPLAY MACRO
DC.W $A000 ;A-LINE FOR DISPLAY
ENDM

**
* THE A-LINE HANDLER
* THIS ROUTINE SIMPLY COPIES THE CURRENT PROCESS ID CHARACTER
* INTO D7, THEN CALLS ENQ TO PUT IT IN THE QUEUE.
* THE REGISTERS A6, D0, D1, AND D2 ARE NOT DESTROYED, BUT
* OTHERS ARE USED IN THE QUEUE ROUTINE.
**

AHANDLER BLOCKINT
MOVEA.L PCBPOINTER,A5 ;ADDRESS POINTED TO

4

MOVE.B (A5),D7 ;PUT ID CHAR INTO D7
JSR ENQ ;ENQUEUE THE BYTE
ADD.L #2,$2(A7) ;UPDATE OLD PC
RTE

* SUBROUTINE: INITALINE
* THIS ROUTINE SIMPLY DOES INITIALIZATION OF THE A-LINE EMULATOR.

INITALINE MOVE.L #AHANDLER,ALINEVECTOR ;A-LINE VECTOR
RTS

* SUBROUTINE: INITPCBS
* THIS ROUTINE SETS UP THE INITIAL VALUES OF THE THREE PCBS IN MEMORY.
* THIS IS WRITTEN AS CODE INSTEAD OF SIMPLY FILLING MEMORY WITH
* DC.W OR DC.L SO THAT THE PROGRAM CAN BE RESTARTED WITHOUT LOSING
* THE INITIAL CONTENTS OF THE PCBS.
*
* REGISTERS USED: A0 AND D4 ONLY. THE ORIGINAL VALUES ARE RESTORED

INITPCBS MOVEM.L D4/A0,-(A7) ;PUSH REGISTERS
MOVEA.L #PCBTOP,A0 ;HOLD TEMPORARILY
MOVE.L A0,PCBPOINTER ;SET UP INITIAL VALUE
MOVE.B #0,PCOUNT ;NUMBER OF PROCESSES=0
MOVE.L #15,D4 ;SET UP LOOP COUNTER

COUNTLOOP MOVE.B #0,(A0) ;SET ID/OUTPUT CHAR TO NULL
ADD.L #2,A0 ;POINT TO SR
MOVE.W #SRSTART,(A0) ;COPY INTO PCB
ADD.L #2,A0 ;POINT TO FIRST PC
MOVE.L #WHILELOOP,(A0) ;COPY INTO PCB
ADD.L #16,A0 ;POINT TO NEXT PCB
DBEQ D4,COUNTLOOP ;BUILD NEXT PCB
MOVEM.L (A7)+,D4/A0 ;POP REGISTERS
RTS

****** THIS ROUTINE IS MOD: IT ACCEPTS THE OFFSET STORED IN A WORD
****** (OF 1..QSIZE + 1) AND RETURNS THE REAL MEMORY ADDRESS TO PUT
****** OR GET THE DATA BYTE. IT SERVES TO WRAP AROUND THE QUEUE SO
****** THAT IT ISN'T POSSIBLE TO WALK OFF THE BOTTOM OF THE DATA
****** STRUCTURE BY INCREMENTING YOUR OFFSETS TOO MUCH. IF THE POINTER
****** IS TOO LARGE (MEANING THAT IT CONTAINS QSIZE+1) THE MACRO

5

****** RESETS IT TO ZERO, OR THE BEGINNING OF THE QUEUE.

* The first parameter is the word offset
* The second parameter is the real address of where the byte is or should go

MOD MACRO
MOVEM.L D1-D2/A4,-(A7) ;PUSH STUFF ON
MOVEA.L A6,A4 ;START AT TOP OF QUEUE
MOVE.W \1,D1 ;HOLD THE VALUE OF THE OFFSET
MOVE.W #0,\1 ;SET THE OLD OFFSET FOR WRAPAROUND
ADD.L #6,A4 ;POINT TO QUEUE DATA
MOVE.L A4,\2 ;POINT TO THE START OF QUEUE DATA
CMP.W #QSIZE,D1 ;IS IT WITHIN 1..QSIZE?
BGT \@ ;SHOULD WE WRAP THE BYTE AROUND?
MOVE.W D1,\1 ;RESTORE THE VALUE OF THE POINTER
ADD.W \1,\2 ;OR INCLUDE OFFSET

* THIS CASE IS EXECUTED IF THE QUEUE HAS WRAPPED AROUND. THE POINTER
* IN \1 IS THEN LEFT AT ZERO (AS IT WAS SET ABOVE) AND THE ADDRESS IS
* LEFT AT THE START OF THE QUEUE DATA (AS IT WAS SET IN A4.)

\@ MOVEM.L (A7)+,D1-D2/A4 ;POP STUFF OFF
ENDM

**
*
* THE PURPOSE OF THIS MACRO IS TO CONSUME .001 SECONDS BY
* LOOPING 280 TIMES. THE PASCAL EQUIVALENT CODE IS:
*
* IT USES REGISTER D2 TO COUNT DOWN AND THUS DESTROYS ITS CONTENTS
*
* PROCEDURE UNITDELAY;
* VAR X: INTEGER;
* BEGIN
* FOR X:=280 DOWNTO 1 DO {NOTHING};
* END;
*

UNITDELAY MACRO
MOVE.L #280,D2 ;COUNT DOWN FROM 280

\@ DBEQ D2,\@ ;LOOP IF NOT DONE
ENDM

**
* THIS MACRO MULTIPLIES THE USER'S T BY TWO. IT CAN AVOID THE

6

* LIMITS OF WORD MULTIPLICATION BY SHIFTING BY ONE BIT
* INSTEAD. THE USER'S T IS PASSED IN D0. THIS MACRO ALSO
* ALLOWS YOU TO INCREASE YOUR TIME DELAY EVEN IF DIVIDE_T
* HAS SET IT TO ZERO, SO THAT YOU CAN'T BECOME "STUCK."
* IT AFFECTS NO OTHER REGISTERS.
**

MULTIPLY_T MACRO
ASL.L #1,D0 ;MULTIPLY D0 BY 2
ENDM

**
* THIS IS WRITTEN AS A MACRO TO AVOID PROBLEMS WITH THE REMAINDER
* IN THE UPPER WORD OF D0 AND TO SIMPLIFY THE MAIN PROCEDURE.
* THE MACRO SIMPLY DIVIDES THE USER'S DELAY BY TWO.
* IT USES NO OTHER REGISTERS THAN D0 (THE USERS'S DELAY)
**

DIVIDE_T MACRO
ASR.L #1,D0 ;DIVIDE D0 BY 2
CMP.L #5,D0 ;IS DELAY TOO SMALL?
BGT \@ ;IF NOT, SKIP DOWN
MOVE.L #5,D0 ;SET IT TO FIVE.

\@ NOP ;FINISH MACRO
ENDM

****** THIS SUBROUTINE SETS UP THE TIMER TO BEGIN GENERATING
****** INTERRUPTS EVERY (TIMESLICE) CYCLES--WHEN AN INTERRUPT
****** OCCURS IT WILL TRAP TO THE CONTENTS OF VECTOR 15
****** TIMESLICE CAN BE ALTERED BY THE PERSON RUNNING THE PROGRAM.
* NOTE THAT TIMERINIT NO LONGER ENABLES THE TIMER: THIS IS DONE
* WHEN PROCESSES ARE ADDED SO THAT TIMER INTERRUPTS DO NOT OCCUR
* WHEN NO PROCESSES ARE RUNNING IN THE SYSTEM.
* IT CHANGES NO REGISTERS PERMANENTLY.

TIMERINIT MOVEM.L A0/D0,-(A7) ;PUSH
MOVE.L #NEWSLICE,TIMESLICE ;INITIAL TIMESLICE
MOVE.L TIMESLICE,D0 ;NUMBER OF CYCLES
MOVEA.L #CPR,A0 ;COUNTER PRELOAD REGISTERS
MOVEP.L D0,0(A0) ;HAVE TO USE THIS INSTRUCTION
MOVE.B #26,TIV ;AUTOVECTOR NUMBER
MOVE.L #MULTIPLEXER,TIMERVECTOR ;VECTOR FOR TIMER
MOVEM.L (A7)+,A0/D0 ;POP
RTS ;RETURN

7

****** THIS SUBROUTINE INITIALIZES THE ACIA1 AND SETS UP THE VECTOR
****** SO THAT WHEN AN INTERRUPT OCCURS THE EXCEPTION HANDLER ACIAHANDLER
****** WILL BE CALLED TO DETERMINE WHETHER IT IS RECEIVE (FROM THE SCREEN),
****** TRANSMIT (FROM THE KEYBOARD) OR OVERRUN THAT IS CAUSING THE INTERRUPT.
****** WHEN AN INTERRUPT OCCURS FROM THE ACIA IT TRAPS THROUGH THE 29TH
****** VECTOR OF THE TABLE. IT CHANGES NO REGISTERS PERMANENTLY.

INITACIA MOVE.L D4,-(A7) ;PUSH
MOVE.B #3,ACIACS ;RESET ACIA
MOVE.W #$1000,D4 ;TIMING CONSTANT

WAIT DBRA D4,WAIT ;PAUSE
MOVE.B #ACIAMODE,ACIACS ;SET ACIA MODE
MOVE.L #ACIAHANDLER,ACIAVECTOR ;TRAP THROUGH VECTOR 29
MOVE.L (A7)+,D4 ;POP
RTS

****** THIS PROCEDURE FIGURES OUT WHAT KIND OF ACIA INTERRUPT HAS OCCURED
****** AND CALLS WHATEVER IT HAS TO TO HANDLE THE SITUATION. THE THREE
****** POSSIBLE SITUATIONS ARE RECEIVE INTERRUPT (FROM THE SCREEN READY
****** FOR ANOTHER CHARACTER), TRANSMIT INTERRUPT (WHEN A KEY HAS BEEN
****** PRESSED ON THE KEYBOARD), OR OVERRUN. IN PRACTICE THIS ROUTINE
****** NEVER CALLS THE OVERFLOW.
* A "-" WILL DIVIDE THE DELAY VALUE BY 2, A "+" WILL MULTIPLY IT BY 2
* A "#" WILL SIGNIFY THAT THE PROCESS IS NOW DEAD. THE PROCESS WILL RESET
* THE TIMER SO THAT IT DOESN'T HAVE TO WAIT FOR ITS TIMESLICE TO EXPIRE.
* THUS, WHEN YOU KILL A PROCESS THE NEXT ONE IS SWAPPED IN WITHIN A FEW
* CYCLES. I GIVE THE TIMER 25 CYCLES BEFORE THE NEXT INTERRUPT HITS SO
* THAT IT GIVES ACIAHANDLER A CHANCE TO FINISH EXCEPTION PROCESSING AND
* RETURN TO THE DELAY LOOP BEFORE THE NEXT PROCESS IS SWAPPED IN.
* THE REGISTERS A5, D5, AND D6 ARE DESTROYED AND NOT RESTORED.

ACIAHANDLER BLOCKINT

**
* THE FIRST PART OF THE CODE FIGURES OUT FROM THE STATUS BITS OF THE
* ACIA WHAT KIND OF INTERRUPT HAS OCCURED, AND JUMPS ACCORDINGLY.
**

BTST.B #0,ACIACS ;IS IT FROM THE KEYBOARD?
BNE RECEIVE ;IF SO, RECEIVE A KEY PRESS
BTST.B #1,ACIACS ;IS THE SCREEN READY FOR MORE?

8

BNE SEND ;IF SO, BRANCH TO SEND
JMP ENDHANDLER ;RETURN IF SPURIOUS INT.

* THIS CODE HANDLES AN INTERRUPT FROM THE KEYBOARD: STRUCTURALLY, IT
* IS A WHOLE SERIES OF IF-THEN STATEMENTS. IT IS WRITTEN AS ONE LONG
* ROUTINE RATHER THAN SUBROUTINES TO SPEED UP EXECUTION TIME AND TO
* PREVENT THE STACK FROM BEING FILLED WITH SUBROUTINE CALLS.

RECEIVE MOVEA.L PCBPOINTER,A5 ;HOLD ADDRESS OF POINTER
MOVE.B ACIAD,D6 ;STORE IT IN D4
CMP.B #'+',D6 ;IF (KEY='+') THEN T:=T*2
BNE NOT_MULTIPLY ;ELSE
CMP.B #0,(A5) ;IS IT A NULL PROCESS?
BEQ ENDHANDLER ;IF SO, DON'T MULTIPLY

* CALL THE MACRO TO DOUBLE THE USERS DELAY *

MULTIPLY_T

JMP ENDHANDLER ;CONTINUE WHILE LOOP
NOT_MULTIPLY CMP.B #'-',D6 ;IF (KEY='-') THEN DIVIDE T/2

BNE NOT_DIVIDE ;ELSE
CMP.B #0,(A5) ;IS IT A NULL PROCESS?
BEQ ENDHANDLER ;IF SO, DON'T DIVIDE
DIVIDE_T

* CALL THE MACRO DO CUT THE USERS DELAY TIME IN HALF *

JMP ENDHANDLER

**
* THIS CODE HANDLES THE DEATH OF A PROCESS. TO BE "KILLED"
* A PROCESS SIMPLY HAS ITS ID CHAR SET TO NULL AND PCOUNT REDUCED
* BY ONE, AND THEN FORCE A CONTEXT SWITCH IN 25 CYCLES.
* NOTE THAT IF THERE ARE NO PROCESSES REMAINING, WE DON'T
* WANT TO DO ANY MORE SWAPPING, SO WE LOAD THE STACK WITH THE
* ADDRESS OF THE WAIT_ON_P LOOP AND WHEN THE PROGRAM HITS AN
* RTE THE LOOP IS JUMPED BACK TO.
**

NOT_DIVIDE CMP.B #'#',D6 ;IS PROCESS KILLED?
BNE CALL_ADDP ;OR CHAR IS SOMETHING ELSE
CMP.B #0,(A5) ;ONLY KILL A LIVE PROCESS
BEQ ENDHANDLER ;NOT A DEAD ONE

9

MOVEA.L PCBPOINTER,A5 ;ADDRESS POINTED TO
MOVE.B #0,(A5) ;MARK PROCESS FOR DEATH
SUB.B #1,PCOUNT ;DECREASE NUMBER OF PROCESSES
CMP.B #0,PCOUNT ;ARE THERE ANY LEFT?
BNE SWAP_IN_NEXT ;IF SO, SWAP IN NEXT ONE
MOVE.B #0,TCR ;TURN OFF TIMER
MOVE.W (A7)+,D5 ;POP OFF SR
MOVE.L (A7)+,A5 ;POP OFF PC
MOVE.L #WAIT_ON_P,A5 ;LOAD WITH ADDRESS OF WAITLOOP
MOVE.L A5,-(A7) ;PUSH ALTERED PC
MOVE.W A5,-(A7) ;PUSH ALTERED SR
JMP ENDHANDLER ;RETURN

SWAP_IN_NEXT MOVE.B #0,TCR ;TURN OFF TIMER
MOVE.L #25,D5 ;NUMBER OF CYCLES
MOVEA.L #CPR,A0 ;COUNTER PRELOAD REGISTERS
MOVEP.L D5,0(A0) ;HAVE TO USE THIS INSTRUCTION
MOVE.B #$A1,TCR ;RESTART TIMER
JMP ENDHANDLER ;RETURN

**
* THIS CODE CALLS ADDPROCESS TO ADD A NEW PROCESS AND THEN FORCES
* A CONTEXT SWITCH WITHIN 25 CYCLES. ADDPROCESS ITSELF TAKES CARE
* OF UPDATING THE PCOUNT IN CASE NO PROCESSES CAN BE ADDED.
**

CALL_ADDP JSR ADDPROCESS ;ADD A PROCESS WITH KEY=ID
MOVE.B #0,TCR ;TURN OFF TIMER
MOVE.L #25,D5 ;NUMBER OF CYCLES
MOVEA.L #CPR,A0 ;COUNTER PRELOAD REGISTERS
MOVEP.L D5,0(A0) ;HAVE TO USE THIS INSTRUCTION
MOVE.B #$A1,TCR ;RESTART TIMER

ENDHANDLER UNBLOCKINT
RTE

**
* THIS CODE HANDLES AN INTERRUPT FROM THE SCREEN READY TO RECEIVE
* MORE INFORMATION. IT CALLS DEQ TO REMOVE A BYTE OF TEXT FROM
* THE QUEUE AND THEN SENDS IT DIRECTLY TO THE ACIA DATA REGISTER.
**

SEND JSR DEQ ;RETURN BYTE IN D7
MOVE.B D7,ACIAD ;SEND BYTE TO SCREEN
UNBLOCKINT
RTE

10

**
****** THIS SUBROUTINE INITIALIZES THE QUEUE WHICH WILL HOLD LENGTH BYTES.
****** NOTE THAT THE QUEUE MUST BE ONE BYTE BIGGER THAN THE MAXIMUM NUMBER
****** OF BYTES IT CAN HOLD, SO THAT YOU CAN TELL WHEN THE QUEUE IS FULL.
**

INITQ MOVEA.L #QUEUE,A6 ;A6 POINTS TO THE QUEUE STRUCTURE
MOVE.L A6,-(A7) ;PUSH POINTER
MOVE.W #0,(A6) ;SET HEAD TO ZERO
ADD.L #2,A6 ;POINT TO TAIL OFFSET
MOVE.W #0,(A6) ;THE TAIL=HEAD=0 FOR NEW EMPTY QUEUE
MOVE.L (A7)+,A6 ;POP THE QUEUE POINTER
RTS ;RETURN

**
****** THIS SUBROUTINES PUTS A BYTE INTO THE QUEUE
****** FIRST, IT INCREMENTS TAIL AND MODS IT TO FIGURE OUT WHERE THE
****** BYTE SHOULD GO. THEN, IT COMPARES THE HEAD AND TAIL TO SEE IF
****** THE QUEUE HAS OVERFLOWED OR NOT. THEN, IT USES A BASE ADDRESS
****** AND THE OFFSET TO CALCULATE WHERE IN MEMORY TO PUT THE BYTE
****** AND FINALLY, THE BYTE GOES IN THE QUEUE!
****** THEN, THE RECIEVE INTERRUPT IS FROM THE ACIA1 IS TURNED ON SO
****** THE TERMINAL CAN REQUEST CHARACTERS TO BE SENT TO IT.
****** THE CONTENTS OF THE ADDRESS REGISTERS A1,A2,AND A3 ARE DESTROYED.
**

ENQ MOVEA.L A6,A1 ;COPY POINTER
MOD (A1),A2 ;FIND REAL ADDRESS OF HEAD
ADD.L #2,A1 ;POINT TO TAIL OFFSET
ADD.W #1,(A1) ;INCREMENT OFFSET
MOD (A1),A3 ;GET THE REAL ADDRESS OF TAIL
CMPA.L A2,A3 ;HAS HEAD CRASHED INTO TAIL?
BEQ SHUTDOWN ;EXIT IF IT HAPPENS
MOVE.B D7,(A3) ;PUT THE BYTE IN THE QUEUE
MOVE.B #$B5,ACIACS ;TURN ON TRANSMIT (SCREEN) INTERRUPTS
RTS ;RETURN TO MAIN LOOP

**
****** THIS SUBROUTINE PULLS A BYTE OUT OF THE QUEUE. HEAD IS INCREMENTED
****** AND THE CHARACTER IS RETURNED AS THE PARAMETER. IF THE QUEUE IS
****** THEN EMPTY, THE INTERRUPTS FROM THE TERMINAL ARE TURNED OFF
****** SO THAT IT DOES NOT REQUEST ANY MORE CHARACTERS.
****** MOD IS USED SO THAT THE INCREMENTS ARE WRAPPED AROUND.
****** THE CONTENTS OF THE ADDRESS REGISTERS A1, A2, AND A3 ARE DESTROYED.
**

11

DEQ MOVEA.L A6,A1 ;COPY POINTER
ADD.W #1,(A1) ;INCREMENT HEAD
MOD (A1),A2 ;CALCULATE THE HEAD ADDRESS TO USE
MOVE.B (A2),D7 ;GET THE BYTE FROM THE HEAD OF QUEUE
ADD.L #2,A1 ;POINT TO TAIL OFFSET
MOD (A1),A3 ;CALCULATE TAIL ADDRESS TO COMPARE
CMPA.L A2,A3 ;IS THE QUEUE EMPTY? (HEAD=TAIL)
BNE QNOTEMPTY ;IF SO, TURN OFF ACIA INTERRUPTS
MOVE.B #$95,ACIACS ;TURN OFF TRANSMIT (SCREEN) INTERRUPTS

QNOTEMPTY RTS ;RETURN

**
* THE MULTIPLEXER RUNS WHEN A TIMER INTERRUPT OCCURS. THE STACK IS
* USED TO PLACE THE OLD SR AND SP FROM THE USER PROCESS WHICH WAS
* INTERRUPTED, AND THEN A7,D0,AND D1 ARE STORED. NOTE THAT THE
* STACK POINTER IS STORED AS IT WAS WHEN THE INTERRUPT HANDLER
* BEGAN EXECUTING, SO THAT THE CONTEXT IS RESTORED PROPERLY BY
* THE RTE AT THE END OF THE HANDLER. THE CIRCULAR DATA STRUCTURE
* IS WALKED THROUGH UNTIL THE NEXT ACTIVE PROCESS IS FOUND.
* NOTE THAT THIS MULTIPLEXER SHOULD NEVER BE CALLED IF THERE
* ARE NO ACTIVE PROCESSES, BECAUSE TIMER INTERRUPTS WOULD BE
* SHUT DOWN.

MULTIPLEXER BLOCKINT
MOVE.B #$0,TCR ;DISABLE TIMER
MOVEA.L PCBPOINTER,A3 ;LOAD ADDRESS HELD THERE
MOVEA.L A3,A5 ;COPY TO TEMPORARY POINTER
ADD.L #2,A3 ;MOVE TO STORAGE OF SR
MOVE.W (A7)+,(A3) ;POP SR INTO PCB
ADD.L #2,A3 ;POINT TO PC
MOVE.L (A7)+,(A3) ;POP OLD PC IN
ADD.L #4,A3 ;POINT TO STORAGE OF D0
MOVE.L D0,(A3) ;COPY D0 INTO PCB
ADD.L #4,A3 ;POINT TO STORAGE OF D1
MOVE.L D1,(A3) ;COPY D1 INTO PCB
ADD.L #4,A3 ;POINT TO STORAGE OF D2
MOVE.L D2,(A3) ;COPY D2 INTO PCB
ADD.L #4,A3 ;POINT TO NEXT PCB

* THIS PORTION OF THE CODE WALKS THROUGH THE PCBS TO FIND THE NEXT
* ONE (CIRCULARLY) WHICH IS ACTIVE AND RESTORES IT.
**

LOOK MOVEA.L #PCBPOINTER,A4 ;COPY POINTER'S ADDRESS

12

CMPA.L A3,A4 ;HAVE WE HIT BOTTOM?
BNE IS_IT_ACTIVE ;IF NOT, TEST FOR ACTIVE
MOVEA.L #PCBTOP,A3 ;IF SO, WRAPAROUND

IS_IT_ACTIVE CMP.B #0,(A3) ;IF NOT,
BEQ KEEP_LOOKING ;KEEP LOOKING
JMP RESTORECONTEXT ;OR ELSE SWAP IT IN

KEEP_LOOKING ADD.L #20,A3 ;POINT TO NEXT PROCESS
JMP LOOK ;LOOP AROUND

* THIS CODE RESTORES THE CONTEXT OF A PROCESS FROM THE PCB

RESTORECONTEXT MOVE.L A3,PCBPOINTER ;UPDATE POINTER
ADD.L #4,A3 ;POINT TO STORAGE OF PC
MOVE.L (A3),-(A7) ;PUSH OLD PC
SUB.L #2,A3 ;POINT TO STORED SR
MOVE.W (A3),-(A7) ;PUSH OLD SR
ADD.L #6,A3 ;POINT TO STORAGE OF D0
MOVE.L (A3),D0 ;RESTORE D0
ADD.L #4,A3 ;POINT TO STORAGE OF D1
MOVE.L (A3),D1 ;RESTORE D1
ADD.L #4,A3 ;POINT TO STORAGE OF D2
MOVE.L (A3),D2 ;RESTORE D2

* THIS CODE FINISHES UP AND RETURNS CONTROL TO THE NEXT USER PROCESS

CONTINUE MOVE.L TIMESLICE,D4 ;NUMBER OF CYCLES
MOVEA.L #CPR,A5 ;COUNTER PRELOAD REGISTERS
MOVEP.L D4,0(A5) ;HAVE TO USE THIS INSTRUCTION
MOVE.B #$A1,TCR ;ENABLE TIMER
UNBLOCKINT
RTE ;CONTINUE EXECUTION OF USER PROCESS

**
************** ADD PROCESS ADDS A PROCESS TO THE LIST ****************
* THIS SUBROUTINE IS CALLED WHEN A KEY BESIDES THE +,-, OR # IS PRESSED.
* IT WALKS THROUGH THE LIST OF PCBS UNTIL IT FINDS A NULL PROCESS OR
* HAS WALKED ALL THE WAY AROUND WITHOUT FINDING ONE. IF IT FINDS A
* NULL PROCESS THE CHARACTER OF THE KEY PRESSED IS MADE THE ID CHAR OF
* A NEW PROCESS AND THE PROCESS IS INSERTED INTO THE PCB LIST.
**

ADDPROCESS MOVEA.L PCBPOINTER,A3 ;LOAD ADDRESS

13

MOVEA.L #PCBPOINTER,A4 ;MEMORY LOCATION
MOVEA.L A3,A5 ;COPY TO TEMPORARY POINTER

WRAP CMPA.L A3,A4 ;HAVE WE HIT BOTTOM
BNE IS_IT_USED ;IF NOT CHECK FOR ALL FULL
MOVEA.L #PCBTOP,A3 ;OR ELSE WRAPAROUND

IS_IT_USED CMP.B #0,(A3) ;IS PROCESS USED?
BEQ ADDIT ;IF NOT, ADD HERE

ARE_ALL_USED ADD.L #20,A3 ;POINT TO NEXT PCB
CMPA.L A3,A5 ;HAVE WE GONE AROUND?
BNE PCB_LOOP ;IF NOT, CONTINUE
RTS ;OR QUIT WITHOUT ADDING

PCB_LOOP JMP WRAP ;CONTINUE SEARCH
ADDIT MOVE.B D6,(A3) ;SET PROCESS ID

ADD.B #1,PCOUNT ;PCOUNT:=PCOUNT+1
ADD.L #8,A3 ;POINT TO DELAY IN PCB
MOVE.L #DELAY1,(A3) ;STORE INITIAL DELAY=1 SEC.
CMP.B #1,PCOUNT ;IS THIS THE FIRST PROCESS
BNE DOWNHERE ;IF NOT, DON'T SET D0
MOVE.L #DELAY1,D0 ;SET UP D0 FOR FIRST DELAY

DOWNHERE RTS ;RETURN TO ACIAHANDLER

**
* MAIN PROGRAM
* THIS FIRST SETS UP THE PCBPOINTER, THEN THE QUEUE, THEN THE ACIA,
* THEN THE TIMER, THEN UNBLOCKS THE INTERRUPTS AND ENTERS
* THE LOOP TO WAIT FOR THE FIRST PROCESS TO BE INVOKED BY ADDPROCESS.
**

START MOVEA.L #$7000,A7 ;SET STACK POINTER TO $7000
JSR INITQ ;SET UP THE I/O QUEUE
JSR INITPCBS ;SET UP THE 16 PCBS IN RAM
JSR INITALINE ;SET UP THE A-LINE EMULATOR
JSR TIMERINIT ;START TIMER INTERRUPTS
JSR INITACIA ;SET UP THE ACIA

MOVE.B #$95,ACIACS ;TURN ON RECEIVE (KEY) INTERRUPTS
UNBLOCKINT

WAIT_ON_P CMP.B #0,PCOUNT ;ARE THERE NO PROCESSES?
BEQ WAIT_ON_P ;IF SO, LOOP HERE

* THIS IS THE SHARED CODE: IT CONSISTS OF THE DISPLAY MACRO (WHICH IS
* A SYSTEM CALL) AND THE CODE FOR THE DELAY PROCEDURE. THE REGISTERS

14

* USED BY THE MAIN PROCEDURE ARE D0, D1 AND D2 FOR THE CONSTANT DELAY,
* OUTER LOOP DELAY TIMER, AND UNITDELAY TIMER. THESE REGISTERS ARE
* STORED WHEN THE PROCESS IS SWAPPED IN AND OUT.

WHILELOOP DISPLAY ;CALL THE A-LINE HANDLER TO DISPLAY

**
* THIS IS THE CODE FOR DELAY. I AM LEAVING IT IN THE MAIN PROCEDURE
* SO THAT THE CONTEXT SWITCHER WON'T HAVE SUBROUTINE CALLS ON THE
* STACK TO CONTEND WITH, AND SO EACH PROCESS CAN RESUME PROPERLY.
* SEPARATE STACKS WOULD BE EASIER WITH A MEMORY MANAGEMENT UNIT.
**

MOVE.L D0,D1 ;COPY T TO LOCAL
DELOOP UNITDELAY ;CALL UNITDELAY

DBEQ D1,DELOOP ;REPEAT T TIMES
JMP WHILELOOP ;GO BACK TO DISPLAY: REPEAT

**
* SHUTDOWN IS CALLED WHEN THE QUEUE OVERFLOWS.
**

SHUTDOWN MOVE.B #$0,TCR ;DISABLE TIMER
MOVE.B #229,D7 ;RETURN CONTROL
TRAP #14 ;TO TUTOR
END TOP ;END OF THE PROGRAM

15

