main screen. Otherwise we go to the
nextcard (dialog, pop-up screen) which
prompts for information that will be
needed for the histogram. Again, if the
user chooses the “cancel” button we
return to the main card. Otherwise a
card showing the sample report pops
upand the user can stare atitaslongas
desired. Clicking the mouse in the
“done” button takes you back to the
main screen.

The purpose of this stack is to pro-
videthe user witha general idea of how
the application will actually look and
feel. The feel of anapplication isimpor-
tant. If it is chunky and internally in-
consistent the user will grow to dislike
the application. A smooth and consis-
tent feel is required and the user knows
best what his or her needs are. Also,
keep in'mind that you need not de-
scribe in detail each aspect of the inter-
face that you are simulating. Though
you should try to simulate all the major
points of the interface, minor ones can
be left alone. For example, most of the

radio buttons in my stack actually do
anything. Another example involves
the “Class History” button. In the final
version the data screen that pops up
from that button varies in size depend-
ing onhow muchschooling the student
has had. In the stack, though, the sizeis
fixed. The stack is a supplement to all
the that you have probably pro-
videgda,ptle\rat deta)rils just whl:u the vzrg)us
menu commands do, what data

will be permitted in what fields, what
files are required, and so forth.

As hasbeen mentioned before, the
stackisquite simple. Most of the scripts
are merely go card x scripts. The excep-
tionsto thatruleinclude theopenStack,
closeStack, hiliteButton,dimMenu,and
hiliteMenuscripts. TheopenStack script
puts up all the necessary menus. The
closeStack handler cleans up the menu
bar and clears out the various global
containers. The dimMenu and hilite-
Menu functions are a bit more com-
plex. Thier purpose is to grey out
(de-activate) and blacken (active) the

requested menusrespectively. Theyare
called from various other handlers like
the “Print Stats Report” menu option,
and the “AP Placement” and “Class
History” buttons.

In the real application you may not
always want a menu to be active. That
is a fairly major point in any interface
and ought to be represented in the
model as such. The hiliteButton func-
tion activates a specified radio button
and dims out its neighbors. Such ac-
tions can be a vital part of the user
interface and therefore are included.
What follow are the openStack, closeS-
tack, dimMenu, hiliteMenu, hiliteBut-
ton, doMenu, idle, the “done” button,
and the “AP Placement” button han-
dlers. They ought to give you a good
idea of the mechanics of the stack. The
various cards were created using
HyperCard’s various painting tools.
However, the important idea to take
away here is that HyperCard can be
used as an aid to software design and
development. #

Writing XCMDs in Lightspeed C:

About the Ahouthox
by Paul Potts

This simple project creates a new
“aboutbox” command for HyperCard
which will display a picture, wait for a
mouse click or keypress, and return to
HyperCard. To construct this project
you willneed Lightspeed C version 3.0,
HyperCard version 1.2, and ResEdit.
You will also need an object-oriented
or bit-mapped drawing program to
create a PICT resource.

To access a resource of PICT,
the toolbox function GetPicture can be
used. We can get the handle like this:

PicHandle the_pic;

the_pict = GetPicture(id_num);

where id_num is an integer. Now
that we have a handle on the PICT, we
can access the parts of the structure. In
C, referencing the elements of a struc-
ture pointed to by a handle canbe done
in three ways. The first uses a double
dereference to access the elements of
the structure directly. The parentheses
are necessary in order to dereference
the handle rather than the field of the
structure:

the_rect = (**the_pict).frameRect;

52 Washington Apple Pi Journal

The second method uses the “->”
operator, which does one dereference
and also accesses a particular field in a
structure. This is the equivalent to
“Pointer A. field” in Pascal, where the
carat indicates the dereference and the
period the field offset. Thus,

the_rect=(*the_pict)->frameRect;

is the equivalent of our first ex-
ample. It is also possible to dereference
the handle, store the result in a pointer,
andaccess the field through the pointer:

Ptr deref;

deref = (*the_pict);

the_rect = deref->frameRect;

Note that this method is either
extremely unsafe or unfriendly, depend-
ing on how it is done. Why? First of all,
if the the handle is not locked thereisa
chance that memory may berearranged
behind your back, and that deref may
no longer point to the PICT by the time
you get around to accessing it later in
your program. Thealternativeis tolock
the handle using HLock. This is very
unfriendly, because if another applica-

tion needs memory space it will be
unable to compact the heap properly
due to your locked handle. I include
thisexample to show how not toderefer-
ence a handle.

Since Cisaweakly typed language,
I like to program v}\,rith the "%Zuhegci
Pointer Types” option turned on. This
ensures that C will not do any implicit
type conversion for you without your
knowledge: you must do typecasting
on your own. Unfortunately, this often
makes code harder to read. Let us take
a specific example from my Convert
procedure to discuss typecasting:
pstr=(StringPtr)CtoPstr((char *)*c_han);

The function CtoPstr is a Light-
speed™ C built-in function (I give the
prototype) which converts a zero-ter-
minated string to a Pascal type string.
Note that it works on a pointer to the
string rather than the handle, and this

lains the dereference of the handle
*c_han. CtoPstr accepts a generic
pointer char* , so we must cast the
pointer to this type. Since pstr is de-
fined asa (Pascal type) StringPtr for the
later call to the toolbox routine String-
ToNum, we must force the function to
return type StringPtr: hence, the cast of
the entire function call.

In order to know which PICT to
display with this XCMD, I let Hyper-
Card pass the XCMD an argument.

DBecember 1988

Understandinghow this worksrequires
an explanation of a special data struc-
ture maintained by H d called
the XCmdBlock. The XCmdBlock is a
non-relocatable block referenced by a
simple pointer: HyperCard passes this
pointer to your XCMD whenitis called.
Here are the first four elements of the

XCMDBlock structure:
short paramCount;
Handle params[16];
Handle returnValue;
Boolean passFlag;
When calling an XCMD from in-
side Hypercard™, you simply give the

name of the XCMD and follow it witha
series of up to 16 parameters. Hyper-
card™ stores these parametersas zero-
terminated strings (C - type strings)
and givesyour XCMDhandles to them,
contained in the params array. par-

amCountholds the number of parame-
ters sent. If we call our XCMD “about-
box,” the XCMD call

aboutbox 35

would make the start of the
XCMDBIlock look like this:

paramCount=1;

params [0]=Handle->Pointer->35

The next element of the
XCMDBIlock is also simple: re-
turnValue is used for an XFCN (Exter-
nal Function). The only difference be-
tween an XCMD and and XFCN is that
an XFCN is called as a function from
HyperCard™, and should puta return
argumentintoa zero-terminated string
and a handle to that argument in re-
turnValue.

If your XCMDis called from within
Hypercard, it can choose to ignore the
call and simply return. The Boolean
variable passFlag can then be set to
True by your XCMD to indicate that it
did not handle the command, and that
the message should continue up the
inheritance chain (see the HyperCard
Help stack for more information on
messages and the inheritance chain.)
The default value of passFlag is False,
so we will not be concerned with it.

I have included the definition of
the XCmdBlock in the file
“working.xcmd.h.” Thisisan extremely
abbreviated version of Apple’s header
file. The complete XCMD include files
as they are written for MPW C do not
function properly in Lightspeed™ C,
but this header file provides the defini-
tions necessary for this introductory
project.

Now we areready to construct our
XCMD. Find a HyperCard stack (your
Home stack will do nicely). Select part

December 1988

of adrawingand copy itinto the Scrap-
book, then paste it into your Hyper-
Card™ stack using ResEdit. You will
need to know the resource ID number
that ResEdit assigns your PICT when
you paste it into your stack. Use Re-
sEdit’s Get Info command to find out
this information.

Now create a new project in Light-
speed™ C and add the MacTraps li-
brary to it. Use the Set Project Type
menu option as shown in figure 1. You
can use any ID number as long as it
doesn’t conflict with another XCMD
resource already in your stack.

Q Application

QO Desk Accessory
QO Devlce Oriver
@ Code Resource

Flle Type
Creator

[J Custom Header

Neme Fboulbou l

v [T 10 (57 s BED)
-
N/}

Figure 1: Project type dialogue for aboutbox XCMD

I have set the creator of the result-
ing file to RSED. This way you can
launch ResEdit by opening the code
resource file. Now that you have cre-
ated the project, typein each of the files
as a separate document and save it in the
same folder with the project document.
This ensures that the compiler can find
all the included files quickly. Then use
the “Add” command to add each file to
your project. (Working.xemd.h should
be in the folder but not added to the
project.) Figure 2 shows the files that
should be included in your project.

Finally, choose “Build Code Re-
source” from the Project menuand copy
the resource from the file LSC created
into your Hypercard™ stack. You
should now have a new command in
your stack. Entering the command into
themessageboxor runningitinascript
will draw the about box and wait for a
mouse clickorkeypress. The command
is:

aboutbox <PICT number>
- 54
[E== aboutbon.n =———
Name obj size
aboutbox.shell.c 32 K>
Center.c 140 |
Convert.c 48
Internal.c 206
MaoTraps 9792

'F/gum 2: Files to include in your project

13 = GameSIG

The regular monthy GameSIG
meeting on November 3rd featured a
surprise reappearance of Ron Wartow,
our Chairman Emeritus and favorite
ninja. Ron suddenly materialized
wieldinga nasty-looking hard diskand
ready to demo Legerdemain, his new
“hypercard fantasy/role playing all-
text all-graphics adventure database
spreadsheet telecommunications and
deskaccessory” program. Despite tech-
nical difficulties (only partly remedied
by Jeff Stetekluh, David Porter, and
David Romerstein), Rongaveusagood
look at the game and signed up play-
testers. More details on Legerdemain
will follow (since Ron is a little para-
noid about revealing too much too
soon!).

Ronand current chairman Charles
Don Hall also shared news on recent
and forthcoming games, including
Neuromancer, Might & Magic I and
Wasteland II, all due to be released
shortly for the Apple II series, along
with Dungeonmaster for the Apple
IIGS (a “must buy”). Times of Lore
and several of the new Infocom games
are already out. Charles distributed
the following programs for review:

Quarterstaff: The Tomb of
Setmoth (Infocom, Mac + or better):
Infocom’s first fantasy/role-playing
game;

Deja Vu: The Nightmare Comes
True (Mindscape, ApplelIGS): conver-
sion of the famous detective “MacVen-
ture,” this time with color graphics;

Uninvited (Mindscape, Apple
IIGS): icon-based “haunted house”
graphic adventure game in the same
popular “MacVenture” series;

Shadowgate (Mindscape, Apple
IIGS): third in the GS conversions of the
“MacVentures,” set in an enchanted
castle where youbattle an evil warlock.

The meeting ended with the
monthly Robot Tanks tournament, in
which Davy Hakim'’s “Crystal Raider”
defeating all other contenders (David
Porter, Jamie Kowalski, Jeff Stetekluh,
and Richard Clark); Jeff’s program is
now up to Version .6, and he is still
looking for beta-testers.

Sorry, folks! We forgot to compile
our annual “Suggestions for Santa.” If
you're desperate for advice the No-
vember issue of Computer Gaming
World has an extensive Christmas
Buying Guide. #

Washington Apple Pi Journal 53

Abouthox XCMD

/.'i.i.’ﬁt"tﬁ..'*Q'..ﬁ'.i.tt.'*Q"it.ﬁ't"tﬁ..'..t"".'i.',

/* File: Workingxcmd.h
Information ©Apple Computer, Inc. 1987
Abbreviated version of XCMD header info */

typedef struct XCmdBlock

{ .
short paramCount; /* We are only concerned */
Handle params[16]; /* With the first half of the */
Handle returnValue; /* XCMDBlock in this project */
Boolean passFlag;
char *entryPoint; /* to call back to HyperCard */
short request;
short result;
long inArgs[8];
long outArgs[4];

} XCmdBlock, *XCmdBlockPtr;

typedef struct Str31

{ char guts[32];
} Str31, *Str31Ptr, **Str31Handle;

/ﬁﬁ*Q*ﬁ'ﬁ.*..ﬁ.'."ﬂt.ﬁﬁﬁﬁt'ﬁ'tt"**ﬁﬁttt'tt'*tt*i‘ﬁ‘.ﬁ'ﬂ'*ﬁﬁ,

/tit.tiiﬁ.tﬁ‘.it.ﬁﬁiﬁﬁ.*it'tt.*i'ttttﬁﬁi*'***ﬁ'Q*i.iiﬁtt'it*,

/* File: aboutbox.shell.c */
/* Simple XCMD shell by Paul Potts */
/* Needs MacHeaders turned on. */

#include “working xcmd.h" /* needed to define XCmdBlock, etc */

void Internal (XCmdBlockPtr paramPtr);
pascal void main(XCmdBlockPtr paramPtr);

/* prototype for Internal*/
I* prototype for self */

pascal void main(paramPtr)
XCmdBlockPtr paramPtr;
{

Internal(parampPtr);

ltﬂﬂi!ﬁﬁ'i.‘l.i.ﬁt.t!*'ﬁtﬁiﬁtitti"tﬁt'ittt*#ﬁﬁ**ﬁii**.ﬁﬁ"./

/hﬁt'itﬁ"Q.Q*ﬁtﬁ.‘ﬁﬁ*i‘ﬁt.t*i*tﬁﬁ***ﬁt*ii****ﬁ*t"i.li..ﬁﬁt/

/* File: Internal.c *f
/* Function to display a specified “PICT” resource as an “about *
1* box” type of dialogue. The input argument, pointed to by the */
/* handle in inArgs[0], is the ID of a PICT resource, which should *!
/* be contained in the calling stack. Needs MacHeaders on. */
#include “working xcmd.h”

Rect Center (Rect the_rect);
long Convert(Str31Handle ¢_han);

void Internal (XCmdBlockPtr paramPtr); /* This function */
void Internal(paramPtr)

XCmdBlockPtr paramPtr;
{

long which_pict;

EventRecord theEvent;

Rect bounding_rect;

WindowPtr theWindow;

PicHandle AboutBox;

FlushEvents(everyEvent, 0);
which_pict = Convert ((Str31Handle)paramPtr->params[0]);
AboutBox = GetPicture(which_pict);

54 Washington Apple PI Journal

bounding_rect = Center ((*AboutBox)->picFrame);

theWindow = NewWindow (OL, &bounding_rect, “\P", TRUE,
dBoxProc, -1L, FALSE, OL);
SetPort{theWindow);
DrawPicture (AboutBox, &theWindow->portRect);
while (1)
{

GetNextEvent (everyEvent, &theEvent);
if (theEvent.what==mouseDown) break;
if (theEvent.what==keyDown) break;
}

DisposeWindow(theWindow);

ReleaseResource(AboutBox);

KillPicture(AboutBox);

DisposHandle(AboutBox);

FlushEvents(everyEvent, 0);

}

/ﬁiitﬁﬁﬁﬁﬁ*'.'.ttiit.'.t...Q"..ﬁﬁ'***tﬁ't'-.'tt.".'tt.'.'./

/."iﬁﬁ*ﬁt"'t.iﬂ‘t*ﬁ‘Q'ﬁ"....'.i..t.Q*'*t..**’tﬁi...’ﬁﬁ'.'l

/* File: Center.c

/* Needs MacHeaders turned on. This function accepts a rectangle */
/* represented in Global Coordinates and centers it on the screen, */
I* using the Window Manager to determine the size of the screen. *l

Rect Center (Rect the_rect); I* self-prototype */

Rect Center (the_rect)

Rect the_rect;
{
GrafPtr wp;
short width, height, new_top, new_left;
GetWMgrPort (&wp); /* Gets the whole screen */
width= wp->portRect.right;
height = wp->portRect.bottom;
new_top = ((height / 2) - (the_rect.bottom - the_rect.top) / 2);
new_left = ((width / 2) - (the_rect.right - the_rect.left) / 2);
\ OffsetRect(&the_rect, new_left - the_rect.left, new_top -the_rect.top
’ return the_rect;
}

Iﬁ*titti'ﬁﬁ*.ﬁt.ﬁ‘ﬁﬁ.*.t.ﬂ"ﬁ.ﬁ.ﬁ.ﬁt"'ﬁ..*i"il‘l‘..ii"'*"'/

Iﬁiﬁﬂiﬁi’.ﬁ‘Q!t.ﬁittt‘tit.t..t.ttt.i......'Qtt"..i.‘ﬁ"ﬂ"'l

/* File: Convert.c

/* Needs MacHeaders turned on. A prototype is provided. */
/* This function accepts a handle to a ¢ (zero-terminated) stringand */
/* returns a long int containing the number represented by the string */

#include “workingxcmd.h” - /* needed for Str31 types */
long Convert(Str31Handle c_han); /* this function */
long Convert(c_han)
Str31Handle c¢_han;
{ o
long thenum; /* the longint to return */
StringPtr pstr; /* pointer to a pascal string */
pstr = (StringPtr)CtoPstr({char *)*c_han); /* convert to Str255
*/
StringToNum(pstr, &thenum); 1* convert to a long
*/

return thenum;

,ti*t***ﬁi.i‘ﬁt'.i‘t.ﬁtﬁ...ﬁ.....'.i'.iﬁ*itit..'."tti"i.t’/

December 1888

