
Mac Programming

Understanding
LightspeedC:
Talking Back to HyperCard
by Paul Potts

In my last article (Dec. '88) I de-
scribed how to create a simple Hyper-
Card XCMD and examined the first
half of Hypercard' s data structure, the
XCmdBlock. Now we will examine the
second half of the XCmdBlockandhow
to call back into HyperCard to use some
of its powerful utility routines.

Background
HyperCard stores all variables,

even numbers, as strings. Pascal ex-
pects that this string will consist of a
length byte followed by up to 255 char-
acters. C treats strings slightly differ-
ently: in C, a string consists of an arbi-
trary number of data bytes terminated
by a zero byte.

Here is how that a Lightspeed C
defines the Str255 data type:

typedef unsigned char
Str255[256];
typedef unsigned char *
StringPtr,** StringHandle;

The HyperCard XCMD interface
code defines a shorter internal format
to hold strings:

typedef struct Str31
{ char guts [32);
} Str31, *Str31Ptr,
**Str31Handle;

Writing XCMDs will be much
simpler if you keep in mind that any
array can hold either a C-type or Pas-
cal-type string. When calling back into
HyperCard it is important to pass it
argumentsin the proper format. XCMD
callbacks necessitate converting back
and forth between string types quite
often. Yourcodemustrememberwhich
type of string lurks in each array: if you
pass a string of the wrong type, the
results will not be what you expect.

Let us now discuss the second half
of the XCmdBlock and how it can be
used to call back into Hypercard. Here
is the definition:

typedef struct XCmdBlock

7 4 Washington Apple Pl Journal

/* ••• we will ignore the
first half of the data
structure. • • *I

char *entryPoint; /*
to call back to HyperCard */

short
short
long
long

outArgs[4];

request;
result;

inArgs[8];

} XCmdBlock, *XCrndBlockPtr;
In order to call back into Hyper-

Card, your XCMD must jump to the
address contained in entryPoint.
interfaces written in MPW C suggest
this can be done with the following:

((ProcPtr) (paramPtr-
>entryPoint)) ();

However, this doesn't work in
Lightspeed C. I tried a large number of
possible calls in C and assembly lan-
guage, to no avail. Symantec told me
over the phone that they would send
me their own interface routines on a
disk for ten dollars. By pleading pov-
erty I convinced the representative to
tell me how to call back into Hyper-
Card, but I was unable to get his method
to work either. In desperation I read the
manual, and found a built-in function
to call Pascal routines:

CallPascal(paramPtr-
>entryPoint) ;

This may not be the best way, but it
works and it is simple to read.

The next field in the XCmdBlock,
request, tells HyperCard just which
internal routine you wish to execute
(there are twenty-nine of them in the
current release of HyperCard). inArgs
and outArgs contain handles to the
arguments sent back and forth to
Hypercard. Fortunately, you don't need
torememberwhichinArgsandoutArgs
go where: Dan Winkler kindly wrote a
set of glue routines for MPW C. To use
them in Lightspeed™ C, change every

reference from theMPW extended type
to double. (I haven't used these rou-
tines to see if they work, but this fix will
at least get it by the compiler for now).
Remember to replace the jumps back
into HyperCard with CallPascal (par-
amPtr-> entryPoint);. I have included
an abbreviated set of glue routines
which are sufficient for building this
project, and quite a bit more besides.

The Project
Drawing in Hypercard is slow and

painful. Wouldn't it be nice if Hyper-
Card could open up its own windows
and use Quickdraw to dynamically
draw into them, even using color on a
Macintosh Il if desired? In my last ar-
ticle theXCMDopenedaPICTresource
and displayed it on the screen, then
went into an event loop and waited for
a mouse click or keypress before con-
tinuing. I wanted to create a window
that was a bit more permanent.

To build my XCMD project, create
a folder with the four source code files
init:working.xcmd.h, working.glue.c,
graphPack.c, and XCMD.shell.c.
Compile. graphPack and the
XCMD.shell ina projectwithMacTraps.
(Do not add the other two source code
files to the project: they are linked in
using the #include directive). Build the
code resource (make sure you assign it
a unique ID number) and paste it into a
HyperCard stack. Define a global con-
tainer in the stack script, with a line like
globalmyWindowPtr,andcreateanew
S1R (string) resource in your stack with
anlDnumberoflOO. You will also need
to add a PICT resource to define the
size and content of the initial window.

Since the XCMD's window does
not belong to HyperCard, HyperCard
doesn'tevenknowitexists. Your stacks
and scripts will run behind it, even
flipping from card to card, and it .will
stay there until you explicitly dispose
of it. Unfortunately, if you drag the
message box window or a desk acces-
sory window in front of it, you will
erase part of the C()ntent region; an
XCMD cannot accept update events,
since it does not run in the background
like a desk accessory. It is up to the
calling stack to make sure the user does
not drag the foreign windows around.

Although HyperCard doesn't
know about my window, my XCMD

Aprll1989

Mac Review

Mac Inker
Ribbons for 5 Cents
By Lee Cabana

I love the results that a brand new
ribbon produces in my lmageWriter II
-dark and sharp, especially in theNear
Letter Quality mode. Unfortunately,
that quality starts to fade after the rib-
bon has made a few cycles through the
cartridge. In the past, I've made do,
buying new ribbons when quality was
foremost, and setting the once or twice
used cartridges aside (wrapped in plas-
tic, and stored in the refrigerator) for
future use. I've also used a technique I
learned at my first meeting of the Erie
Apple Cruncher Users Group-open
the cartridge, spray WD-40 over the
ribbon, and let the reassembled car-
tridge sit for a couple days while the
ink in the unused portions penneates
the entire ribbon. Not a bad technique
(the price is certainly right!), but there
isonlysomuchinkin thecartridge,and

uses HyperCard to store a pointer to
the window. When the window is cre-
ated, my XCMD will call back into
HyperCard to put a pointer to the win-
dow into the global container. Each
time the XCMD is called after that, it
asks HyperCard for the contents of the
container and uses it to access the
window. When the window is to be
destroyed, my XCMD disposes of the
window and sets the container to NIL.

How can one XCMD do all that?
Simple. I use an approach similar to
that of Hypercard's designers, and
modulariz.e everything. Here are the
commands I have defined so far:

graphPack 1, PICT number
-open a new window
graphPack 2, x1, y1, x2, y2
-draw a line between the coordinate pairs (local

coordinates)
graphPack 3, PICT number
-reinitialize the window and redraw the PICT
graphPack9
-destroy the window

Using this modular approach, it
should be easy for you to add routines

Aprll1989

the second sprayingdoesn'trejuvenate
the ribbon as well as the first applica-
tion.

Some time ago, I noticed advertise-
ments in the Apple user magazines for
a product called Maclnker, a system
that claimed to re-ink ribbons to like
new quality. Theheadlineclaimed,/'Re-
ink ribbons for 5 cents!" When I asked
other Apple users their opinion on the
Mac Inker and re-inkingin general, the
feedback was lukewann at best - com-
ments such as "too messy," ''doesn't
work," were typical. SincetheMaclnker
cost $42.00 plus $3.00 for a bottle of ink,
I didn't want to take a chance, and con-
tinued with the above techniques.

In mid October, my folks wanted
to know what I wanted for Christmas-
so why not, I asked for a Maclnker.

Christmas day arrived, and a box
about 3/4 the siz.e of a shoe box was
under the tree. It contained the
Maclnker, a squeeze bottle of ink, two
re-inking spindles, and three sheets of
instructions.

The system is fairly simple. Mac
Inker is a plastic platform with several
holes the size of quarters in it. There is

to draw boxes, cirlces, etc. If you use
my core routines please give me credit
in your code. Note that in this project I
have not put in extensive error-trap-
ping code: my point was instead to
illustrate the use of Callbacks. The only
error-checking I do is to beep if an
improper number of arguments is
passed. It is possible, for example, to
crashyoursystembyusingagraphPack
9 call without having opened a win-
dow using graphPack 1,1. Another
common source of system crashes is
out-of-memory conditions: if your sys-
tem crashes upon entry to my XCMD, I
suggest removing as many INITs and
other memory-grabbing things from
your system folder. If your routines are
crashing, examine them very carefully
for minor errors: even a missing aster-
isk (dereference) can cause a system
crash. This leads us directly into a brief
discussion on ...

Debugging
Debugging XCMDs can be very

difficult. It is not possible to use
TIIlNK' s debugger, since the XCMD

an electric motor mounted under the
platform, withaspindleextendingfrom
the motor through the platfonn. The
ribbon snaps onto the platform and
spindle, which pulls the ribbon. The
heart of the system is the ink spool,
which is a hollow cylinder with two 0-
rings. In between the 0-rings are two
pin holes. This spool is mounted on the
far end of the platform witha wing nut.
To my surprise, the spool was fixed,
and did not tum.

The set up is simple. First, draw
about six inches of ribbon from the car-
tridge; mount the cartridge on the spin-
dle, and pull the ribbon over the re-
inking spool so it fits between the two
0-rings.Fill thespool to,3/4fullofink
from the squeeze ink bottle, and tum
on the switch. The ribbon is drawn
slowly over the pin holes in the spool,
and two parallel lines of ink 1/8 "wide
are placed on the ribbon as it rolls past
at a speed of aboutthreefeetperminute.

The instructions emphasiz.e that
most new users tend to over ink. To
avoid this, they recommend filling the
ink reservoir 1/2 to 3/4 full one time,
and letting the system runfor3-4 hours

will operate only in tandem with Hy-
percard. It is possible, however, to ex-
amine the contents of handles. using
MacsBug, if you have it installed in
your system folder. I use the following
code:

asm {MOVE.L the_handle, 03)
Debugger();

Suppose you want to examine a
string in memory while your XCMD is
executing. If, for example, 03 contains
26C72, type dm 26C72. The address of
data object will be stored there (ignore
the highest bytes.) dm (the address)
and you will see the string displayed in
ASCII with either a length byte before it
(for a Pascal-type string) or a zero byte
terminating it (for a C-type string). If
the string is not there, your handle is
wrong!

If all is well, you can continue exe-
cution of the XCMD by typing g (for
go). If your object is improperly refer.;.
enced, you will probably have to type
rb (reboot) to avoid a system crash.

Next time: improvingHyperCard's
math performance with XFCNs, and
usinggraphPack to graph functions. 9

Washington Apple Pl Journal 75

