
Paul R. Potts

MEMORY MANAGEMENT 
IN C: AN INTRODUCTION

• 3 Object Lifetimes (2 are also C storage classes)

• static

• automatic

• dynamic

• The static storage class (not to be confused with static declarations)

• Declarations and definitions

• External linkage

• Static initialization: implicit and explicit

• Don’t say “global” when you’re talking about C

WHAT I’LL COVER (1)

• Blocks

• Implementation of the automatic storage class, and implications

• The heap or “free store”

• malloc, free, and family

• Memory management and memory leaks

WHAT I’LL COVER (2)

• The C Programming Language by Brian W. Kernighan and Dennis
M. Ritchie

• Indispensable, not comprehensive. Skips briefly over topics

that really need to be explained in greater depth.
Programmers who stop here will think C is far easier to get
right than it really is.

• Look up the errata too!

MY FAVORITE BOOKS ON C
PROGRAMMING

• C Traps and Pitfalls by Andrew Koenig

• Somewhat outdated, but a quick and fun read that makes you

realize that you need to know more than what’s in K&R.

ASIDE: MY FAVORITE BOOKS ON C
PROGRAMMING

• C Programming FAQs by Steve Summit

• Adapted from old Usenet discussions

• Somewhat outdated, but still valuable as an on-ramp to the

standards themselves

ASIDE: MY FAVORITE BOOKS ON C
PROGRAMMING

• Expert C Programming: Deep C Secrets by Peter van der Linden

• Indispensable!

• This book explains the relationship between arrays and

pointers in detail. You don’t really understand them if you
haven’t studied this book.

ASIDE: MY FAVORITE C
PROGRAMMING BOOKS

• C: A Reference Manual by Samuel P. Harrison III and Guy L.
Steele Jr., Fifth Edition

• The best place to look up the details of standard library

functions, although not entirely up to date.

ASIDE: MY FAVORITE C
PROGRAMMING BOOKS

• The Standard C Library by P. J. Plauger

• Contains a reference implementation of an outdated

standard library. Very useful if you need to implement your
own version of a standard function, or if you want to study
how these functions are written. I learned a lot!

ASIDE: MY FAVORITE C
PROGRAMMING BOOKS

• What if you want to compete in the International Obfuscated C
Code Contest? https://www.ioccc.org/ (Or, just stare in horror
and fascination at some of the weirdest C code very written?)

• What if you wanted to use C like a functional programming
language? This book covers some interesting programming
techniques.

ASIDE: MY FAVORITE C
PROGRAMMING BOOKS

https://www.ioccc.org/

• “A C Test: The 0x10 Best Questions for Would-be Embedded
Programmers”

• https://rmbconsulting.us/publications/a-c-test-the-0x10-

best-questions-for-would-be-embedded-programmers/

• A great talk on “Deep C” by Olve Maudal and Jon Jagger, with

in-depth interview questions and answers (NOTE: this is a link
to a PDF file)

• http://www.pvv.org/~oma/DeepC_slides_oct2011.pdf

ASIDE: RESOURCES FOR C
PROGRAMMING INTERVIEWS

https://rmbconsulting.us/publications/a-c-test-the-0x10-best-questions-for-would-be-embedded-programmers/
https://rmbconsulting.us/publications/a-c-test-the-0x10-best-questions-for-would-be-embedded-programmers/
http://www.pvv.org/~oma/DeepC_slides_oct2011.pdf

Many books on C and C++ use different terms 
for the same concepts.

I have adopted terms used by Kernighan and Ritchie in

The C Programming Language, 2nd edition

This unfortunately leads to some “operator overloading.” For
example, I use “object” to refer to variables that may be integers,

structures, arrays, etc., and “class” to refer to C “storage classes” —
these terms don’t have meanings from object-oriented programming!

TERMINOLOGY

There are three kinds of object lifetimes in C programs.

Kernighan and Ritchie refer to the first two kinds

as “storage classes.”

THE THREE LIFETIMES

If an object has the static storage class, the lifetime of an object is the same as
the lifetime of your program. The objects are ready to use when main is called,

and they remain usable until your program exits.

The static storage class always applies to all objects that are

“declared outside all blocks” [K&R, p. 195]

A block means “a group of declarations and statements” [Ibid.]

inside curly braces { }. This includes functions, but is not limited to functions.

Objects with this storage class aren’t necessarily “global.” They may not be
accessible to code in other files, if they are declared with the static keyword.

THE FIRST LIFETIME: THE
STATIC STORAGE CLASS

Objects with static storage class are always initialized for you,

even if you do not specify an initial value.

This is important to know. Later we will contrast this with objects with
automatic storage class.

It’s worth repeating: objects with static storage class are always initialized for you,

even if you do not specify an initial value!

I will come back to this point when we contrast it with initialization of
objects with automatic storage class.

INITIALIZATION OF OBJECTS
WITH STATIC STORAGE CLASS

int a;

static int b;

/*

 The variables a and b both have

 static storage class. The keyword

 static in this context does not

 determine the storage class! It

 gives b “internal linkage.”

*/

EXAMPLE: 
THE STATIC STORAGE CLASS

In the previous example, we defined our variables, in the same lines
of code where we declared them. However, this isn’t required.

There can be extern declarations that are not definitions, but
which specify the type and name of an object.

A declaration is like a customs declaration – it describes what is in the
package. It isn’t the same as the package.

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

We write extern declarations to allow code in one file 
to access objects in another.

The objects must have external linkage 
(that is, they must not be declared static).

If they aren’t, we get a linker error. We convinced the compiler that
there is a variable there, but the linker can’t can’t find it, because it is

considered private to the file where it is defined.

DIGRESSION: 
EXTERNAL LINKAGE

I’ll repeat this point: a declaration is like a customs declaration – a piece
of paper that describes what is in the package.

The definition actually creates the package.

There can be many declarations for the same object.

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

There must be only one* definition of an object.

(Technically, multiple identical definitions of the same object outside all blocks
are allowed within the same file, but the compiler will consider them all to

comprise a single definition. This is very poor style, though.)

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

Defining objects of the same name, with external linkage, in
multiple files, should produce a linker warning, when the linker

attempts to hook up multiple compiled files into a single program.

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

I once spent a week debugging a program with a strange bug.

The engineer who wrote the code originally included definitions of
objects, both with the same name, with external linkage in different

translation units (C source files).

He did not understand why the linker was giving him “multiple
definition” warnings. The warnings had annoyed him, so he disabled

them in the project settings.

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

WHAT I THOUGHT WAS
HAPPENING

As a result of the bug, which was hidden because of the disabled
warning, functions compiled in two different files appeared to be
accessing the same object, but they were really accessing different

objects with the same name.

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

WHAT WAS ACTUALLY
HAPPENING

This can happen if you accidentally include a definition, not a
declaration, in a header file, which is then included in multiple

source files. 
 

Note that defining objects of the same name, with internal linkage, in
multiple files, is allowed; this is an important mechanism to minimize
clashes between objects with the same name that aren’t meant to be

shared between source files.

DIGRESSION: 
DECLARATIONS AND DEFINITIONS

IT’S FINE TO DO THIS

/* In file one.c */

int a;

static int b;

/* In file one.h */

extern int a;

/* In file two.c */

#include “one.h”

int main()

{

 a = 1; /* The object a, defined in one.c, is modified */

 return 0;

}

EXAMPLE: 
USING EXTERN

You can see now why I avoid the term “global variable” when talking about C.

It does not adequately describe what is happening, when you see an object
declaration outside all blocks.

A “global variable” in C is an object declared outside all blocks, with external
linkage. This makes it potentially accessible to code in other files. However, to
access it, that code needs to include an extern declaration for the object.

Since a “global variable” in C is not a single thing in the code, the things that
together make a variable “global” should not necessarily have a single name.

DIGRESSION: 
“GLOBAL”

When writing C, give as few of your variables and functions external
linkage as possible. C does not have nested lexical scopes, user-

defined namespaces, a module system, or other features to help limit
conflicts between names.

“With the benefit of practical experience, default global visibility has 
been conclusively and repeatedly demonstrated to be a mistake.” 
[Peter van der Linden, Expert C Programming: Deep C Secrets, p. 42]

DIGRESSION: 
“GLOBAL”

There’s another important way to use the static storage class.

The static storage class may also apply to objects within blocks.
Remember that blocks include function bodies.

That is, lexically local variables (but K&R does not use this term).

THE STATIC STORAGE CLASS,
CONTINUED

/*

 This function returns the number of times

 it has been called since the program started.

*/

int callcount(void)

{

 static int sum;

 /*

 This use of static gives sum

 static storage class

 */

 return ++sum;

}

EXAMPLE: A STATIC OBJECT
WITHIN A BLOCK

Because a block-scoped static object has static storage class, it is
perfectly legal and safe (although unusual and in poor style) to return its

address, and use the address to access it from elsewhere in your
program.

THE STATIC STORAGE CLASS,
CONTINUED

int * get_count_p(void)

{

 static int count = 0;

 return &count;

}

int main()

{

 int * count_p = get_count_p();

 (*count_p)++;

 (*count_p)++;

 (*count_p)++; /* What is the value of count now? */

}

EXAMPLE: 
RETURNING THE ADDRESS OF A STATIC

OBJECT

int * get_count_p(void)

{

 static int count = 0;

 return &count;

}

int main()

{

 int * count_a_p = get_count_p();

 int * count_b_p = get_count_p();

 (*count_a_p)++;

 (*count_b_p)++; /* What is the value of count now? */

}

EXAMPLE: 
RETURNING THE ADDRESS OF A STATIC

OBJECT

C offers a feature that helps you safely use variables with the static storage
class. They are always initialized before main is called. This applies to

variables with the static storage class outside all blocks and inside blocks.

If you provide initial values, the compiler will use them. Otherwise it will
set the variables to zero (sort of)*.

*Integral types like char, int, and long will have all their bits set to
zero. Floating-point types will hold 0.0. Pointer types will be initialized
to the null pointer constant. These may not actually have all their bits set to

zero! This depends on your hardware platform.

DIGRESSION: 
STATIC INITIALIZATION

C provides initialization of objects with static storage class by
default, because it increases safety without incurring significant

runtime cost.

Avoiding hidden runtime costs was one of the primary design goals of C.

The specified initialization values may be loaded directly from your
program’s executable file at startup, or set once by startup code

generated by the compiler before main is called. The details vary,
depending on your platform, but the outcome is the same.

DIGRESSION: 
STATIC INITIALIZATION

Objects with static storage, including objects in blocks 
(within your functions) are only initialized once… 

and not each time the block is executed!

Again, this happens if an explicit initialization value 
is provided, or not.

DIGRESSION: 
STATIC INITIALIZATION

It is good style to always provide an explicit initialization value, even if it
is the same as the default initialization value the compiler would have

provided for you.

Doing this does not incur any additional runtime cost at all, and
helps to clarify what the author of the code was thinking.

It is especially important when using pointers.

DIGRESSION: 
STATIC INITIALIZATION

/*

 Catastrophically wrong code! 
 On most platforms you don’t actually want 
 to write to memory location zero.

*/

int * p;

int main()

{

 *p = 1;

 return 0;

}

EXAMPLE: 
NON-EXPLICIT INITIALIZATION

/*

 Still catastrophically wrong, but

 at least more visibly so.

*/

int * p = NULL;

int main()

{

 *p = 1;

 return 0;

}

EXAMPLE: 
EXPLICIT INITIALIZATION

If an object has automatic storage class, it means that its storage
space is allocated as it comes into scope, and this storage space is

discarded (and may be recycled) when it goes out of scope.

This scope corresponds to the C “block” where the object is 
declared and defined.

They are often allocated on the run-time stack, a reserved area of
memory, but this is not technically required by the C standard.

THE AUTOMATIC STORAGE
CLASS

In early C, the auto keyword was used to specify automatic storage
class.

void f(void)

{

 auto int a;

 static int b;

}

Don’t use auto in new code. Objects declared in blocks are auto by
default. Also, C++ now uses this keyword to mean something different: 

automatic types.

THE AUTOMATIC STORAGE
CLASS

Objects with automatic storage class are not initialized by default and
may initially contain any pattern of bits.

Using uninitialized objects makes your program’s behavior undefined.
An immediate crash is actually the best-case scenario, because you’ll
know something is wrong. Subtle data corruption and incorrect

results are more likely.

Objects with the automatic storage class

ARE NOT INITIALIZED BY DEFAULT!

THE AUTOMATIC STORAGE
CLASS

Objects with automatic storage class are traditionally allocated

on the call stack, sometimes called the execution or run-time stack.

 The stack contains stack frames, sometimes called activation records.
These frames are managed automatically when functions are called

(hence the name).

A stack frame traditionally also holds storage for function
parameters and the return address (to return to the calling function).

THE IMPLEMENTATION OF THE
AUTOMATIC STORAGE CLASS

If a function f1 calls another function f2, then while f2 is
executing, the stack will contain frames for f1 and f2.

After f2 returns to f1, the program no longer needs f2’s frame.

THE IMPLEMENTATION OF THE
AUTOMATIC STORAGE CLASS

The Stack S to rage Area
0101010101010101010101010101

f 1' s st ack f r ame f 2' s st ack f r ame

The Stack Storage Area
010101010101010101010101010101010101

f 1' s st ack f r ame

If the function f1 then calls a third function f3, the runtime is free
to re-use the stack space that previously held the frame for f2.

This has important implications for the programmer!

THE IMPLEMENTATION OF THE
AUTOMATIC STORAGE CLASS

The Stack Storage Area
010101010101010101010101010101010101

f 1' s st ack f r ame f 3' s st ack f r ame

Never store a pointer to an object with automatic storage class,
outside of the scope in which it is declared.

Why not?

THE IMPLEMENTATION OF THE
AUTOMATIC STORAGE CLASS

void f1(void)

{

 int a = 1;

}

int * f2(void)

{

 int b = 2;

 return &b;

}

EXAMPLE: WHAT HAPPENS WHEN YOU USE A
POINTER TO AN OBJECT WITH AUTOMATIC

STORAGE CLASS

void f3(void)

{

 int c = 3;

}

int main()

{

 int * p = NULL;

 f1();

 p = f2();

 f3();

 printf(“%d\n”, *p);

 return 0;

}

In the previous example, f2 returns a pointer which the caller then
uses. This usage is not valid, but there are safe ways to get the value

of an object with automatic storage class.

A function might return the value. Return values are always copied, so
the destruction of the stack frame does not affect this copy.

A function might pass a pointer as a parameter, and let the called
function f2 set the value in the context of the calling function f1.

GETTING THE VALUE OF AN OBJECT
WITH AUTOMATIC STORAGE CLASS

EXAMPLE: SETTING STORAGE OWNED BY
THE CALLING FUNCTION USING A POINTER

void f1(int * p)

{

 *p = 99;

}

int main()

{

 int b = 0;

 f1(&b);

 printf(“%d\n”, b);

 return 0;

}

Modern compilers and run-times do not always use traditional stack frames in
memory to implement objects with the automatic storage class.

Compilers often store these objects in CPU registers for efficiency. On many
modern platforms, parameters and return addresses are also placed in registers,

depending on the platform’s ABI (Application Binary Interface).

Wherever they are stored, the storage for automatic objects must not be
accessed outside the block in which they are declared.

This is a fundamental part of the runtime behavior of C programs, whether
the objects are stored in memory or in registers.

THE IMPLEMENTATION OF THE
AUTOMATIC STORAGE CLASS

C does not initialize objects with the automatic storage class by default.

We have seen that initialization of objects with the static storage class adds
little to runtime, and that time is spent only at the start of the program.

If C supported default initialization of objects with the automatic storage
class, this would imply that each time a function is called, the runtime must

initialize those objects.

The C programming language was designed to avoids extra run-time cost,
unless the programmer clearly requests it.

INITIALIZATION OF OBJECTS WITH
THE AUTOMATIC STORAGE CLASS

The lack of default initialization of objects with the automatic storage class 
is a major source of bugs.

Modern compilers should warn you if you ever use an object with
automatic storage class, without initializing it first.

You should get in the habit of always specifying an initial value for all
objects with automatic storage class.

As I mentioned, it’s not a bad idea to do this for objects with static storage
class, too, for the sake of clarifying what initial value you expect.

INITIALIZATION OF OBJECTS WITH
THE AUTOMATIC STORAGE CLASS

In traditional C one would typically declare the variables used inside
a function only at the start of the function.

Modern C supports declaring variables closer to where you use
them. This can help make your code safer and clearer.

You can actually introduce variables in any block, whether it is the
block that defines a function, or a nested block.

MORE ABOUT BLOCKS

Let’s say you need a variable to perform a swap, but it is only ever used
inside the body of an if statement. You can just declare it where you use it.

void f1(void)

{

 /* …some code… */

 if (a > b)

 {

 int temp = a;

 a = b;

 b = temp;

 }

 /* …some more code… */

}

MORE ABOUT BLOCKS

The variable temp goes out of scope at the end of the body of the
if statement. It is treated like any other object with automatic
storage class; its storage is invalid after it goes out of scope.

If you use a lot of local variables, this technique can help minimize
the total amount of stack space needed by your function.

MORE ABOUT BLOCKS

Objects with automatic storage class were often used to index for loops, so
C99 and C++ allow you to declare a variable in the initialization of the loop.

for (int i = 0; i < count; i++)

{

 /* Loop body */

}

With this feature, we can reuse a loop variable name for multiple loops in
the same function. The initialization is clear and obvious, and accidentally

using the loop variable outside of the loop is impossible.

MORE ABOUT BLOCKS

The third lifetime is not tied to an object storage class.

It is known as dynamic lifetime and uses memory allocated by
malloc, calloc, or realloc. The memory comes

from a pool called the heap or free store.

The pointers that access this dynamically-allocated memory can be
objects with either static or automatic storage class.

DYNAMIC LIFETIME

The malloc system call reserves memory and returns a

pointer (or the null pointer constant, upon failure).

The calloc system call behaves like malloc, except that the memory
block is cleared (all the bytes are set to zero).

The realloc system call can be used to change the size of a memory
block. It may copy the contents to a new location and return a different

pointer, or return the null pointer constant on failure.

The free system call gives the memory back to the system for recycling.

DYNAMIC LIFETIME

The pointer returned by malloc and calloc should always be
checked against the null pointer constant before attempting to

dereference it.

Remember that the zero-filled memory returned by calloc, 
may not contain a safe default value for all types, specifically pointer

types. This depends on the platform!

DYNAMIC LIFETIME

Remember that realloc can fail, leaving your 
original memory allocation intact. Therefore, you should not overwrite the
original pointer with the value returned by realloc unless it is not null*.

This makes it somewhat tricky to actually use realloc safely. 

*If you do so, your reallocation has failed and you have lost the pointer to your original
block of memory, immediately creating a memory leak.

In C, allocation system calls return an object with the void pointer type 
(void *). The typing rules of C allow this object to be assigned to a
pointer object of any type, without a cast. This circumvents the C type

system, so be cautious!

DYNAMIC LIFETIME

There are a lot of rules for working with allocated memory.
Breaking any one of them can crash your program, 

or silently corrupt your data.

Sometimes a crash may happen long after you broke the rule. 
If you damage a system data structure, 

the problem might not show up immediately!

RULES FOR DYNAMIC LIFETIME

• Your program must not assume that the allocated memory has been
set to zero, unless you called calloc.

• If the allocation fails, your program must not dereference the
returned null pointer.

• After the memory is deallocated using free, your program 
must not access it.

• After calling free, your program must not call free again on the
same pointer.

• Your program should free every block of memory 
it successfully allocates. (This may be controversial. At a minimum, it
should deallocate memory allocated on the fly, as opposed to only at startup).

RULES FOR DYNAMIC LIFETIME

If your program loses track of a pointer to allocated memory before
deallocating it, the memory is leaked and your program cannot get it back.

Deallocated memory is not returned to the operating system immediately.
The heap can only grow during the lifetime of your program.

When your program terminates, all its memory (including any leaked
memory) will be returned to the operating system.

A program that leaks memory may impair not only its own performance,
but also the performance of other programs running on the same computer.

MEMORY LEAKS

This lifetime does not apply to the objects in your program. The variables
in your program have the same two storage classes they always had.

This lifetime refers to the run-time state of the heap, where memory is
made available temporarily for your program’s use.

Your program’s objects may point to this memory and use it.

This “disconnect” between the C storage class lifetime of your pointer
object, and the dynamic lifetime of the memory you point to, is the

fundamental cause of many run-time errors in C programs.

DYNAMIC LIFETIME

void f(void)

{

 int * a = malloc(100 * sizeof(int));

 if (NULL != a)

 {

 /* Do something with this memory */

 free(a);

 }

 else

 {

 /* Report an allocation error here */

 }

}

EXAMPLE: DYNAMIC LIFETIME

In the previous example, the pointer has automatic storage class, but the
memory pointed to does not. C does not have support for guaranteeing
that the pointer cannot be used when in an invalid state. Your code has

to avoid this “manually.”

This mismatch in lifetimes creates an opportunity for several critical
errors. If the pointer is dereferenced before it is set to the return value

of a successful allocation, the program will access invalid memory.

If the pointer’s block ends before free is called, the pointer goes out
of scope and its lifetime ends, but the allocated memory has been leaked.

DYNAMIC LIFETIME

In the previous example, the allocation is checked to make sure it
succeeds, and free is called only after successful allocation. The

code is simple enough that obvious errors are clearly avoided.

But in real programs, dynamically allocated memory is rarely used like
this. Generally, we use an object with static storage class to point to it,
so that it can be accessed from different functions at different times.

The rules for safely using objects of dynamic lifetime must be obeyed
at every point in the program’s lifetime. This can require a considerable

amount of care and bookkeeping.

DYNAMIC LIFETIME

“Whenever you write malloc, write the corresponding free. If
you don’t know where to put the free that corresponds to your

malloc, then you’ve probably created a memory leak!” 
[Peter van der Linden, Expert C Programming: Deep C Secrets, p. 193]

DYNAMIC LIFETIME

node * p = head_p;

while (p != NULL)

{

 free(p);

 p = p->next_p;

}

EXAMPLE: FREEING THE ELEMENTS
OF A LINKED LIST (INCORRECTLY)

node * p = head_p;

while (p != NULL)

{

 node * next_p = p->next_p;

 free(p);

 p = next_p;

}

EXAMPLE: FREEING THE ELEMENTS
OF A LINKED LIST (CORRECTLY)

“The reason people make these mistakes is typically 
not maliciousness and often not even simple sloppiness; 

it is genuinely hard to consistently deallocate every allocated object 
in a large program (once and at the right time in a computation).” 
[Bjarne Stroustrup, The C++ Programming Language, 4th Ed., p. 279]

DYNAMIC LIFETIME

• 3 Object Lifetimes (2 are also C storage classes)

• static

• automatic

• dynamic

• Declarations and definitions

• External linkage

• Static initialization: implicit and explicit

• Don’t say “global” when you’re talking about C

WHAT I COVERED (1)

• Blocks

• Implementation of the automatic storage class, and implications

• The heap or “free store”

• malloc, free, and family

• Memory management and memory leaks

WHAT I COVERED (2)

QUESTIONS?

