C Workshop
Extending Modal Dialogs

Paul Potts
Wooster, OH

THINK C

The Gauntlet is Thrown Down

A few months ago I was developing a program that used a
modal dialog. Ishowed the results to my roommate. He ran the
program and brought up the dialog, but was then interrupted.
When he got back, the screen saver had come on. He moved the
mouse to refresh the screen, and then scrutinized my display.

“Which button is default?” he asked .

“That one. The program drew the outline, but it got erased.”

“It should be there.”

“Oh, come on! The Finder doesn’t even keep the outline
around its default buttons when you use a screen saver!”

“If it’s in Inside Macintosh, it should be there. Go fix it.
Here, make me acopy first.” He popped ina blank disk. Nothing
happened.

“How come it didn’t ask if I want to initialize the disk?”

“That doesn’t work when a modal dialog is active,” I
explained lamely.

He then pressed the “Q” key. Nothing happened. “There’s
a dialog button called Quit — why didn’t it quit?” he asked.
“What kind of user-friendly program is this, anyway?”

The Gauntlet Is Picked Up
My roommate was right. We are used to putting up with the
limitations of modal dialogs, but ModalDialog can be extended
using filter procedures. The parametersof ModalDialog can be

declared in C as follows:
void NodalDiatlog (filterProc, itemHit)
ProcPtr filterProc;

int s{temHit;

The address of your filter procedure gets passed by casting
ittoa procPtr. If youdon’t want to use afilterProc, you pass NIL
as your first parameter. If you do use a filterProc, Modal dialog
then gets each event for you, using a mask which excludes disk
events, and sends them to your filterProc. It is then up to your
filterProc to decide what to do with them. ModalDialog expects
your filterProc to be declared as follows:

pascal Boolean FProc(Dialog, Event, 1teaHit)

DialogPtr theDialog;
EventRecord stheEvent;

int {tenHit;

A dialog filterProc is actually a function that returns a
Boolean value. This value should be TRUE if you want Mo-
dalDialog to exit, and FALSE otherwise. ModalDialog passes
your filterProc a pointer to the current event. You then can do
what you want with it. If your function returns FALSE, Mo-
dalDialog will handle the event after you. Thus, you can get a
crack at each event even before ModalDialog does. Your
filterProc can then do any of the following:

1) Handle the event, then send it to ModalDialog
2) Handle the event and tell ModalDialog to exit
3) Change the event and return to ModalDialog

4) Read the event queue itself and act on it.

My filterProc uses the first technique to handle updateEve-
nts before ModalDialog gets them. This allows me to redraw the
default box around a button and then tell ModalDialog to do its
own updating. I use the second technique to exit ModalDialog if
my filterProc receives a key event that it understands. I use the
third technique to handle the <return> key by changing the event
from a keypress to a click in the default button. You don’t
actually have to do this for <enter> and <return> keypresses,
since ModalDialog handles key events, but I wanted to illustrate
the technique of altering an event.

Scott Knaster, in Macintosh Programming Secrets, suggests
that command-key equivalents be provided for buttons in modal
dialog boxes whenever possible. Command-key equivalents
aren’t always necessary, however. Some popular applications,
such as Microsoft Word, provide single-key equivalents for
button clicks, if no editable text fields are present in the dialog,
suchas in the Save Changes Before Closing dialog. I suggest that
commnad-key equivalents be used in modal dialogs with editable
text fields, and single-key equivalents (or both single-key and
command-key equivalents) be used when no editable text fields
are present. My code illustrates both techniques, but your
application should use only one. Even though my modal dialog
has an editable text field, I allows the usertopressa 1,2,0r 3 to
choose one of my three buttons. The user can also use <com-
mand>-F, S, and T to choose the first, second, and third dialog
items, respectively. NOTE: You must make certain that the
editText item(s) in the DITL resource that you use are set to
Disabled, or else my technique will not work.

When drawing your dialogs with ResEdit, keep in mind that
the command-key character is ASCII 17 in the Chicago font, but
cannot be typed directly from the keyboard. Microsoft Word will
generate this character if you use the Change function to replace
aspecified character withaA17. You can then copy thischaracter
and paste it into your ResEdit fields. RMaker can generate this
character by using \11.

Since ModalDialog does not pass disk events to the filter-
Proc, I use the fourth technique to allow the user to inserta blank
disk while the ModalDialog is active. It gets initialized by
DIBadMount, which then mounts it (or ejects it, if initialization
failed). This mightbe useful inamodal dialog which displayson-
line volumes. SFPutFile uses this technique to allow disks to be

mounted while its dialog is active.

i WL et &

14

© MacTutor, April 1990

There are other ways you can handle events in amodal dialog
using filterProcs. You can do anything you want during null
events. You can plot a series of icons in your dialog to give the
appearance of animation, or draw the current time using Draw-
String. After all, you have the current grafPort, and can draw
directly with QuickDraw. Remember, though, that your drawing
operations should be as fast as possible, and must take much less
than a single tick to work effectively. Also, remember your poor
end-user: don’t make your dialogs overly confusing or complex.
We want to extend the Macintosh interface, not bury it.

If you like my code, you are welcome to use it “as-is,”
modify it, or completely rewrite it. I'd appreciate it if you’d put
my name somewhere in your application, but you can drop me a
postcard instead.

Listing:

/* This Think C 3.92/4.9 code should be compiled with MacHead-
ers turned on. Create a new project called FilterProc.n, and
add this file, driveDialog.c, along with HandleDialog.c and
MacTraps. Prototypes are provided. Compile the resource file,
FilterProc.r, with RMaker and put it in the folder with the
FilterProc project.*/

driveDialog.c

/!l*x*ll****x***tX**xx*******!***********l*tx*/
/* File: driveDialog.c */

/* A simple driver application for the dialog
handler. Your own application would call

it instead. */

void main (void);
int HandleDialog(short IDJ,

\éoid main0®d

int itemHit,
/% Dialog item hit, returned by HandleDialog */
counter;

InitGraf (&thePort);
InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(PL),
FlushEvents(everyEvent, 8);
InitCursor();

/* Now send the HandleDialog function the resource ID of the
0LOG to use */
itemHit = HandleDialog ((short)1);

/% Now beep to tell us what item number the HandleDialog call
sent back (i.e., what item was hit to exit ModalDialog */

for (counter = 1; counter<= itemHit; counter++)
SysBeep(48);
Listing: HandleDialog.c

/xxxxxxxtx*xtx**:xxxxxx*x*xx*axxx*x*xx*xxx/

/* File HandleDialog.c */
JERERRXERRRRRRRREEXRRXRRERK KRR EREEXXER |

/* Prototypes */

int HandleDialog(short Dialog-ID)J;
/* Called whenever you want to put up a modal dialog */

pascal Boolean FProc(DialogPtr theDialog,

EventRecord *theEvent,

int *itemHit);
/¥ Filter procedure called by ModalDialog to screen dialog
events */

Point CenterDialogltem(DialogPtr theDialog,

int item_number);

/¥ Returns the center of the rect of a dialog item, to be
called from a filter proc while a modal dialog is active. ¥/

void FlashDialogltem(DialogPtr theDialog, int
item_number);

/* Flashes an item of a dialog, to be called from a filter

proc while a modal dialog is active. ¥/

void HandleUpdate(DialogPtr theDialog);
/¥ Used to handle update events while a modal
dialog is active, called from a filter proc.*/

/**l*********t*******tK*****X**xtlt********!*/

/* This procedure returns the center of a dialog item as a
point. It is designed to be used with buttons, but will work
with any type of dialog item. */

/¥ Input: theDialog (a DialogPtr), item number (an integer) */
/* Output: a point */

Point CenterDialogltem(theDialog, item_number)
DialogPtr theDialog;
int item_number;

Point the_center; /* Center of item, to return */

int itemType; /* Returned by GetDItem but not used */
Handle theltem; /* Returned by GetDItem but not used */
Rect the_Rect; /* Returned by GetDItem */

GetDItem(theDialog, item_number, &itemType,
&theltem, &the_Rect);

the_center .h = the_Rect.left + ((the_Rect.right -
the_Rect.left)/ 2);

the_center.v = the_Rect.top +((the_Rect.bottom -
the_Rect.top)/ 2);

return the_center;

/!t*i!****xl**!t*l**i!*tit!!!!t!x*l!l!****t*t/

/¥ This procedure returns the center of the rectangle of the
default dialog item as a single point. */

/* Input: theDialog (a DialogPtr), item_number (an integer) ¥/
/* Output: none */

void FlashDialogltem(theDialog, item_number)
DialogPtr theDialog;
int item_number;

long tickScratch; /* returned by Delay, unused */

int itemType; /* Returned by GetDItem but not used */
Handle the_item; /* Handle to default button */

Rect controiRect; /* Returned by GetDItem but not used */

GetDItem(theDialog, item_number, &itemType, &the_itenm,
kcontrolRect);

HiliteControl(the_item, 1);

gelay(b, &tickScratch);

/!txxt!*X******tX!xt*t***x*!**!*!*xt*t*#t*!**/

/* The following function handles update events for your
dialog box. It is called whenever the filterProc receives an
update event. You can put whatever you want to be drawn in
the dialog in it. Right now it redraws the rounded rect
around the default button (number one). */

/* Constants for drawing roundRect */

© MacTutor, April 1990

17

sdef ine edgeCurve 16
sdefine gapBetween -4
sdefine lineSize 3

void HandleUpdate(theDialog)
DialogPtr theDialog;

Rect controlRect; /* rectangle of the default control. We
need this to draw the round rect. */

int itemType; /* Returned by GetDItem but not used */

Handle the_item; /* ditto */

Rect border; /* Rect of the thick border x/

PenSize(1ineSize, lineSize);

/* Get control #1‘s rectangle and grow it a little bit, then
call FrameRoundRect to draw it. */
GetDItem(theDialog, Cintd1, &itemType,
&controtRect);

border = controlRect;

InsetRect(&border, gapBetween, gapBetween);
FrameRoundRect(&border, edgeCurve, edgeCurve);

&kthe_item,

/**l***!X**it**tt*xittt****X*XXX*X*#***X!***!/

/* The following filterProc is used to handle extra events
during the modal dialog loop, such as update events. Its
original purpose was to keep the default round-rect drawn
around the control even after a screen saver has redrawn the
screen. It also handles insertion of blank disks and button-
keyboard equivalents.

NOTE: If you have one or more editable text fields within
your modal dialog, your key equivalents should use the command
key. If you don’t have any editable text fields, your key
equivalents can be handled straight. The names of your
buttons should a1l begin with unique first letters, and if you
use command-key entry you should provide a legend of command-
key equivalents next to the buttons. x/

pascal Boolean FProc(theDialog,
DialogPtr theDialog;
EventRecord*theEvent;

(int *itemHit;
longkey; /* Holds the key code */
Point ctr; /* where the mouse click will go x/
int DIResult; /* Returned by DIBadMount */
EventRecorddiskEvent; /* Returned by EventAvail, below */

theEvent, itemHit)

/* Since ModalDialog doesn’t handle bad disk mounts, we have a
handler that will allow the user to format new disks with &
modal dialog still on the screen. */

it (GetNextEvent(diskMask, &diskEvent) == TRUE)
}f (HiWord(diskEvent .message) != @)

diskEvent.where.h = ((screenBits.bounds.right
- screenBits.bounds.left)/ 2) - (304 / 2);

diskEvent.where.v = ((screenBits.bounds.bottom
- screenBits.bounds.top)/ 3) - (184 / 2;

InitCursor(),;

DIResult = DIBadMount(diskEvent.where,

diskEvent .message);

} /* end of if GetNextEvent test for disk events */
switch (theEvent->what)
{

case (updateEvt):

HandleUpdate(theDialog);

return FALSE;
/xDo not return an item hit value. Returning
FALSE tells modalDialog to handle the update

event. We have just added our own handling of the event. ¥/
break;

case CkeyDown):
key = theEvent->message & charCodeMask;
switch(key)

/¥ key has been pressed, we want to interpret it properly. */
case 13: /* Return key ¥/

FlashDialogItem(theDialog, 1J;
ctr = CenterDialogltem(theDialog, 1);

/X We can do it this way: change the event record to fool
ModalDialog. ModalDialog doesn’t flash the button long enough
for my taste, so I flash it some more myselif. */

theEvent->what = mouseDown;

LocalToGlobal (&ctr);

theEvent->where = ctr;

theEvent->message = 0;

/* Now we tell ModalDialog to handle the
event. It doesn’t suspect a thing! */
*itesHit = 1;
return FALSE;
break;

?aso 3: /* the Enter key */

/% Or we can do it our own way by flashing the button and
te11ing ModalDialog to exit. */
FlashDialogItem(theDialog, 1J;
*itemHit = 1,
return TRUE;
t):ruk;

/* These key equivalents do not rely on the use of the command
key. You would use these in your modal dialog only if you hed
no editable text fields. */

case 49: /* 1 key ¥/

FlashDialogltemCtheDialog, 1);

XitenHit = 1;
return TRUE;
break;

case 50: /* 2 key */

FlashDialogItem(theDialog, 2);

xitemHit = 2;
return TRUE;
groak;

cese 51: /* 3 key */

FlashDialogltenCtheDialog, 3);
XjtemHit = 3;

return TRUE;

groak;

/* These key equivalents for buttons use

the command key, and are appropriate even

for use in a modal dialog with editable text. */
case 102: /* ASCII F */

lf((theEvent-)modifiers & cmdKey)

18

© MacTutor, April 1990

FlashDialogItem(theDialog, 13;
*itemHit = 1;

return TRUE;

break;

}

case 115: /* ASCII S X/

{

1f C(theEvent-rmodifiers & cmdKey)
FlashDialogltem(theDialog, 2);
*itemHit = 2;
return TRUE;
break;
}

)

case 116: /¥ ASCIL T ¥/

if (theEvent-)modifiers & cmdKey)
FlashDialogltem(theDialog, 3);
*itemHit = 3;
return TRUE;
groak;

}
default:

return FALSE; /* Do nothing if another key is chosen. */

break;

} /* end of key code switch */

case (mouseDown):

could do something.

return FALSE;
break;
casge (mouselp):
return FALSE;
break;
default:
return FALSE;
break;

modal dialog.

ModalDialog. */

DialogPtr

/* You can insert your own mouse click

handlers here. ModalDialog takes care of mouse events, but
you can do do special processing. For example, ModalDialog
does nothing if a mouse click

occurs inside a modal dialog but outside of a control, but you

*/

/* We don’t handle any other types of events, so these get
sent to ModalDialog unchanged. */

} /* end of switch */
} /¥ end of filterproc function */

/uu*uuxuuxxxunnnu*nxnx*xu***xu/
/¥ HandleDialog is a function to draw and dispose of a simple

It tells ModalDialog to use a filter proc to
screen events for the dialog.

Input: short Dislog_ID - the resource ID
Output: item number of the control that was hit to exit

int HandleDialog(dialog_ID)
short dialog.ID;

int itemHit; /* returned by ModalDialog */
theDialog; /* The dialog we will work with */
GrafPtr oldWindow; /* Saves the previous window */

Real-time muiltitasking for Macintosh

We are GreenSpring Computers, offer-
ing products to the Macintosh develop-
ment community for real-world 1/0
intensive applications. In the areas of
NuBus coprocessing and real-time
multitasking with Apple’s new MR-DOS
operating system, we are providing the
means for Macintosh to be used in new
and demanding applications — means
such as ruggedized, rack-mounted
Macintesh II computers, color displays
and keyboard drawers, and 1/0 inter-
faces called IndustryPacks."

Ask us about SpringBoard, our
68020-based NuBus board designed
for real-time processing in a Macintosh
environment. With one or four Mbytes

© MacTutor, April 1990

of RAM, a floating point coprocessor
option, a full 32-bit NuBus master/
slave interface, compatible with
MR-DOS and MPW, with space for two
plug-in IndustryPacks, this $1,450
processor is ideal for I/0 supervision.

Our IndustryPacks support such
interfaces as A/D, D/A, serial, OPTO-22,
digital 1/0, and GPIB. And our four
channel serial card provides very low
cost Mac serial port expansion.

Speak to us today about your appli-
cation. We're GreenSpring Computers,
leading the Macintosh away from the
desktop.

@& Authorized Value Added Reseller

A A& & 4

GREENQBSIRING

1204 O'Brien Drive
Menlo Park, CA 94025
(415) 327-1200

FAX (415) 327-3808

Macintoshis aregistered trademark of Apple Computer, inc
fndustryPack is a trademark of GreenSpring Computers

19

I

GetPort(&oldWindow); /* save current grafPort ¥/
SetDAFont(@); /* use system font */

/* First, get the dialog from the resource and prepare to
execute ModalDialog */

theDialog = GetNewDialog(dialog_ID, (Ptrdd, (WindowPtr)-13;
if (ResError() != notrr)

/* Called if GetNewDialog returns an error. You can put your
own error handler here. In this example we are assuming that
the dialog is available in the application resource fork */

SysBeep(40);
ExitToShe110);
)

ShowWindow(theDialog);

SetPort(theDialog);
FlushEvents(everyEvent, 8);

/*Modaldialog call should wait until event in active control*/
me rowe ModalDialog((ProcPtr)FProc, &itemHit);
DisposDialog(theDialog);

FlushEvents (everyEvent, @);

SetPort(oldWindow);
MODULA-2 COMPILERS /* restore drawing state ¥/
return itemHit,
IN BOTH STANDALONE
AND MPW VERSIONS Listing: Filterproc.r

j333333033332¢2 3332222332 ¢

* RMaker source file for
¥ filterProc application

Metrowerks Compilers are one-
pass optimizing compilers gener-

ating native-code for the Motor- FTscttat st ssssssstelsssy
ola 68000, 68020 and 68030 mi-
cro-processors.MMetrowerks Filterproc.n.RSRC
SP™ PSE™ and MPW™ compilers RSRCRSED
generate 32-bit cleanvcode‘and ar‘e Type DITL ;;Text for dialog
source-code compatible in their a ; ;Resource number
support of the Modula-2 language 5 ;;Number of items
and the Macintosh toolbox and OS
calls. Button Enabled

17 27 37 95

First \11F ;;The non-printable character is * ASCII 17 (see

M Metrowerks Modula-2 SP™ $39 text)

The StartPak™, an introductory-level pro-

gramming system published by Macmillan. Button Enabled

17 108 37 182

M Metrowerks Modula-2 PSE™ $179 Second \11S
The Professional Standalone Edition™, an
integrated environment consisting of a Button Enabled
specialized text editor, a one-pass optimiz- %llzgﬂ &7”252
ing compiler for 680x0 processors and a
source-level debugger. editText Disabled
B Metrowerks Modula-2 MPW™ $150 137 865 157 222
The optimizing compiler generating MPW This is editable text
Linker format code for 680x0 processors. staticText Enabled

61 43 115 246
This is an example of a modal dialog with command-key equiva-
lents for buttons.

Metrowerks, Inc.
The Trimex Building, Rte 11
Mooers, NY 12958, USA

x :

Phone 514.458.2018 Fax 514.458.2010 The above text should be all on one line

Visa, MasterCard, Institutional POs accepted. Shipping Cem 1 ial

US & Canada $6, International $30. Dealer and Dis- Type DLOG . odel dia o9

tributor enquiries welcome. ’

MPW v 5.0 may be ordered with MPW package $125

extra. Shipping US&Canada $6, International $30. 90 120 266 420

I\l\;ll;lvl;/owerks Modu[:;\& isl a lradkﬂu?rk uli M((‘lrowerks, Ilnc. Macintosh, Visible NoGoAway

is I s of Apple € , Inc. .
are registered trademarks ¢ e p nc i 5 ,','prOC 1d -

8 ;,refCon E!ﬂ'
1 ;,DITL T

20 © MacTutor, April 1990

