A (NewToNSCRIPT) INHERITANCE PRIMER

Paul R. Potts
potts@oit.itd.umich.edu

any developers have a difficult time understanding the

notion of inheritance. Inheritance is a set of rules which

are specific to individual languages. However, in
addition to the language, developers using a particular language
tend to use a given inheritance idiom. Particular class libraries
tend to favor one idiom over another. Developers using a lan-
guage such as C++ tend to think of inheritance differently than
developers using NewtonScript, Scheme, Eiffel, Smalltalk or
other languages with inheritance features. In addition, languag-
es such as C++ evolve over time, adding new features.

All of this means that inheritance is really a tower of Babel
for developers. In the first section of this article I discuss some
aspects of inheritance using C++ as an example. Then, in part
two, I look at exactly how the inheritance rules operate in
NewtonScript and how the Newton’s view system serves as an
idiom (and rationale) for these rules. If you think like the
designers of NewtonScript and its view system, you should be
able to remember the NewtonScript inheritance rules and use
the system to its best advantage.

INHERITANCE IN GENERAL

Real-World Thinking About Inheritance
In biological terms, the term inheritance is generally used to
refer to genetic inheritance that children share with parents.
What are some of the things we think about when we think
about inheritance?

First, there are some obvious things:

¢ Inheritance takes place from one or more (in the real world,
typically two) parents.

¢ Characteristics of the parents, or ancestors of the parents,
occur in the children.

Next, there some that aren’t so obvious:

¢ Inheritance from two parents is governed by a complex set of
rules and there is a significant element of randomness
involved.

¢ Inheritance alone is not sufficient to completely determine an
organism’s form.

In computer programs, we usually don’t want any nondeter-
ministic behavior, so we hope there is no randomness involved in
the inheritance rules. We also hope that our program’s behavior
is not unpredictable (programs that do this are generally said to
contain bugs). So, let’s leave the latter two statements out of our
thinking about inheritance in computer programs.

This leaves us with the first two statements. Since they are
so simple to express, they seem like good starting points for
modeling inheritance in programs.

Inheritance in Computer Programs
In the history of innovations in the design of computer programs
and languages, inheritance is a natural evolution of the notions
of functional decomposition and information hiding that are
familiar to users of structured programming techniques.
Functional decomposition and information hiding help users to
manage complexity; inheritance is another tool to help achieve
the same goal.

In (Booch), Grady Booch uses the following definition of
object-oriented programming:

“Object-oriented programming is a method of implementation in
which programs are organized as cooperative collections of
objects, each of which represents an instance of some class, and
whose classes are all members of a hierarchy of classes united via
inheritance relationships (Booch, p. 38).

Booch uses the notion of classes, an extension of the type system
that many languages such as Pascal and C already implement. I
won't talk about this distinction further, since it is irrelevant in
NewtonScript.

NewtonScript’s design is partially modeled after that of
SELF, a language with no classes, but only objects. For more
information on Self, see (Ungar) and (Chambers). You can
simulate classes using NewtonScript: see Appendix C of The
NewtonScript Programming Language which is included with
the Newton Toolkit.

The Inheritance Idiom
In (Booch chapter 2), Booch goes on to describe two hierarchies
in complex systems:

“The two most important hierarchies in a complex system are its
class structure (the ‘is a’ hierarchy) and its object structure (the
‘part of” hierarchy).

“Semantically, inheritance denotes an ‘is-a’ relationship. For
example, a bear ‘is a’ kind of mammal, a house ‘is @’ kind of
tangible asset, and a quicksort is a’ particular kind of sorting
algorithm. Inheritance thus implies a generalization / specializa-
tion hierarchy... (Booch, p. 59).

r========77

| Now, try time and |
| expense tracking software |
for 30 days, FREE!

top billable time from slipping through
I the cracks! TimeReporter for Newton

|
|
|
compiles time records from your I

I calendar or direct input. Analyze, print, and I
I fax reports including an actual time sheet. |
Transfer data to desktop programs like I
TimeSlips5 and Excel. I
|

|

|

|

|

To try TimeReporter FREE
call 1-800-730-5370

| Just pay $9.95 to cover S&H. If youre not
completely satistied, return TimeReporter
within 30 days. Otherwise we'll credit the
| $9.95 toward the introductory $129 price.

PIE Developers 2.4 + July 1994 * Page 19

Note that this definition of inheritance is an idiom, and not
enforced by either C++ or NewtonScript. This kind of inheritance
is the recommendation of many developers after years of
thinking about object-oriented design. There is no technical
reason why the “part of” hierarchy Booch speaks about cannot be
handled by an inheritance relationship; it just isn’t traditionally
done that way. In NewtonScript, as we shall see, an inheritance
link can be and is used for just that.

Booch also limits his thinking when he states that a
subclass always specializes the superclass. This may be one of
the most effective and efficient uses of inheritance as it exists in
a language like C++, but it is not the only one. (Jacobson) shows
that this general/specific relationship is useful because subclass-
es should only contain that which is different from the super-
class. However, the subclass can also be thought to extend a
class (Jacobson, p. 61) — if you think of a class in terms of its
additional functionality (methods) and new data members, you
extend it; if you think of a class in terms of its behavior in your
hierarchy, or in the way it models categories of real-world
classes, you may be thinking in terms of specialization.

While there is no technical reason why you can’t use
inheritance rules in other ways, keep in mind that if you do so,
other programmers may have a hard time understanding what
you are doing. You will be speaking the same language, but using
your own idiom.

Single Inheritance

Let’s look at some classes. Figure 1 shows examples of “is-a”
relationships between classes. An apple “isa” fruit, which
“is a” food. The pear and apple areboth fruits; veg-
gies and fruits areboth foods. (Class names borrowed
from Sphar, p. 37).

(Some of you may be wondering whether the tree on the
right still represents single inheritance, if their are several
arrows pointing to one class. Yes, it does, because single inherit-
ance means that each class has at most one parent. Parents can
have multiple children.)

In the example above, we say that fruit and apple are
descendants of class food; food is an ancestor of its two
subclasses. (Some textbooks use child and parent, subclass and
superclass; it really doesn’t matter as long as the meaning is
understood). The use of arrows to point from a child class back to
the parent is traditional and used in many different textbooks
independent of the actual language used to implement the
inheritance relationships.

Polymorphism

Polymorphism is the ability of one object to take on many shapes
(poly = many, morph = shapes). In computer programming,
polymorphism means that the type of an object can be deter-
mined at runtime. In C++, this means that a variable which is of

fruit veggie fruit
apple pear apple

Figure 1 - “is-a” relationships.

a particular class can also be used to hold objects who are
descendants of this class. Let’s look at some uses to which this
can be put.

¢ Polymorphism can be used to send the same message to a
variety of different objects; the exact class of each need not be
known at compile time.

Let’s assume that apple, pear,and food all have an
eat method (see Figure 2). If fruit and apple are children
of food, and we have a variable of type food, in C++ we could
assign a descendant of type food (such as apple) to this
variable. (See Sphar, p. 37). Sending the eat message to this
variable then calls a different method, depending on the class of
the object, which is determined at runtime. One variable can
take on different possible behaviors (many shapes).

¢ Polymorphism is extremely useful for collections. For
example, an array of type food can contain objects whose
classes are children of class food.

In C++, the chief feature that allows polymorphism is the
virtual method. A virtual method is a method which may be
overridden at runtime in a child class. A pure virtual method is a
virtual method that must be overridden — calling it directly is an
error. This kind of method is useful for creating abstract base
classes that can’t “live” on their own. For example, it makes no
sense to provide a method called cook for the class food, since
the cooking method depends on the kind of food (subclass).
Abstract base classes can be simulated in NewtonScript the
same way they are in Smalltalk — just write your base class
method so that it gives an error message if called.

In C++, inheritance is based on the notion of class and
subclass. While objects can be polymorphic, they cannot alter
their behavior beyond the predefined set of possible methods in
themselves or their parent classes. In NewtonScript, inheritance
is dynamic, and can be changed at runtime. We examine an
example of this later.

Muiltiple Inheritance

In multiple inheritance, not only can one parent have multiple
children, but one child can have multiple parents. Where any
combination of single inheritance can be represented by a tree
structure, multiple inheritance is represented by a directed
acyclic graph.

In newer class libraries, the use of multiple inheritance
allows the implementation of mix-in classes. In theory, this
means you can add the necessary behavior to a class by simply
mixing in the classes you want. For example, if you have a
generic array class, and you want to make it streamable, so
that you can save it to disk and restore it easily, you could define

food eat ()
fruit eat () array stream
} class class
my
apple }| eat() class
Figure 2 Figure 3

DT s

PIE Developers 2.4 + July 1994 - Page 20

—_—

a class that inherits from both the array and the stream
class (see Figure 3). Your objects would then be able to receive
messages which are directed to either parent. Several of the
newer commercial class libraries, such as the Booch Components
and Code Warrior’s PowerPlant, use multiple inheritance.

In C++, multiple inheritance can be very complicated.
According to (Waldo, 102)

“...the real expressive power of inheritance is delivered by just one
of its six variants... yet we must learn the complexity of all six
variants’ interactions with other language features, such as
initialization, virtual functions, overloading, and conversions.

Take a look at the example below, which is borrowed from
(Waldo), p. 103:

class top {
public: virtual void f() { printf("top::f()"); }
}i
class left: public virtual top {
public: void g() { £(); }
}i
class right: public virtual top {
public: void f() { printf("right::£()"); }
}i
class bottom: public left, public right {
}:
main()
bottom x;
x.g();
return 0;

}

This is a deliberately contrived example, but it demonstrates a
potential problem in multiple inheritance: ambiguity. C++
exacerbates the situation because instead of disallowing the
potential name conflict between the two £ methodsin top
and right, C++ allows the potential ambiguity, which must be
resolved by the compiler. The upshot of this is that classes which
use multiple inheritance must be very carefully written to avoid
situations like the one shown in Figure 4.

I bring up this example to illustrate that there exists a
debate over whether the complete, complex inheritance mecha-
nism in C++ is justified by its usefulness in creating real-world
applications. In NewtonScript we have an example of a language
that supports a particular, simple type of multiple inheritance
which has already shown its usefulness for building Newton
applications.

top has method £

top left has method g,
£() which makes a call to
* method f.

left right right has method f.
gl() £()
Call class bottom's
* method g. Which
bot tom instance of f is

eventually called?

In C++ the surprise
answer is right::f.

Figure 4 - multiple-inheritance confusion.

Mangled Inheritance

Suppose you have some objects that inherit from each other in a
circular order (see Figure 5). This is an invalid inheritance chain.
Some environments may be able to detect such a construct, but if
you ask NewtonScript to search an object like this, the system
goes into an endless loop. I bring this up only to show one of the
possible error conditions you can produce when experiments
with inheritance go wrong.

Software Design Using Inheritance in C++ and NewtonScript
When object-oriented languages began to appear, it was widely
thought that these languages were perfectly suited to program-
ming graphical user interface systems such as the Macintosh.
After my initial exposure to THINK C with Objects, I was
skeptical.

The THINK Class Library uses single inheritance as a
powerful way to structure the behavior of classes, but this
behavior hierarchy is distinct from the system’s visual hierarchy,
where objects such as buttons and check boxes are contained
within other objects such as dialog boxes and windows. It doesn’t
make sense for a button to share most of the behavior of a
window. With only single inheritance, this leads to a complex
scheme of inserting pointers to objects into other objects. Other
class libraries such as Borland’s TurboVision for C++ use similar
techniques.

Now, the developer community is beginning to get its hands
on class libraries that use multiple inheritance. I use C++ daily
and have great appreciation for some of the features, such as the
stream library, that multiple inheritance can make possible. I
don’t quite feel competent, however, to write a reusable class
library of useful components. Very few users of C++ do. Copy
constructors, default base class destructors, exception handling,
the many complex uses of the const keyword, name spaces —
few compilers can handle it all well, and few users can, either.
Even now when reading other developers’ code, I find myself
reaching for my C++ reference books more times than I care to
admit.

With only a few months of experience with NewtonScript
under my belt, I do not feel nervous sharing reusable
NewtonScript objects with the developer community. Many users
are finding that C++ is just too complex a world to comfortably
inhabit, especially given the latest set of new features. Although
I find C++ to be very powerful, I doubt that I would find too
many users who would not agree that the language has grown to
the point where using a well-chosen subset is nearly essential to
retain one’s sanity.

NewtonScript, on the other hand, was designed to be a
simpler alternative. Let’s take a look at what I consider some of
the key differences.

® At runtime, C++ objects are aggregates of all the data objects
in their inheritance paths. This means that if an object comes
from several classes, each of which has a number of data
members, at runtime the object takes up a large amount of
memory. Inheritance in NewtonScript is based on difference.

food
Figure 5 - mangled .)
¢ inheritafwe. veggle fruit
tomato

PIE Developers 2.4 « July 1994 - Page 21

e In C++, polymorphism is complex because of the type system.
In NewtonScript, polymorphism is effortless, because of the
ability of slots to hold any kind of object and for objects to
alter themselves and the contents.

For building large systems, NewtonScript also has some
definite disadvantages over the C++ inheritance model. One of
these is security. In C++, classes can contain methods and data
which are public, private or protected — inherited classes cannot
violate the security placed on these objects. This is useful for
large-scale programming projects in which multiple developers
are working on components of a system, or for commercial
classes in which only compiled libraries and header files are
provided. The NewtonScript programmer is free to interfere with
other classes, either accidentally or purposefully, and little can
be done to guard against this kind of behavior.

C++ is also type-safe. This means that the compiler can
check for many kinds of type violations at compile time (for
example, assigning a long integer to a data member of a class
which is supposed to hold a floating-point value). In Newton-
Script, this is a perfectly legal activity, and the user does not
discover the error until they notice incorrect behavior at
runtime, perhaps when they try to send the contents of the slot
to a function that is expecting a floating-point value.

NEWTONSCRIPT INHERITANCE

NewtonScript uses a simple type of multiple inheritance between
frames, in which inheritance links are maintained via two
particular reserved slot names, _parent and _proto. Thereis
nothing magical about the slots themselves; for frames in RAM,
you can create the slots yourself, modify them, remove them and
use them to link frames in any manner you choose. The special
part comes from the way NewtonScript automatically uses these
slots to look up methods or slots using its inheritance rules.

The Slots and Nothing But the Slots

In NewtonScript, inheritance takes place only via the _parent
and _proto slots. This may seem obvious, but programmers
accustomed to other languages may need to make some adjust-
ments. If you are accustomed to a language like Pascal, that lets
you declare a function inside another function, where the
innermost function then can access the containing function’s
variables, you may be initially tempted to write something like
this in NewtonScript:

outerFrame := {yin: 1, yang: 2, innerFrame:
{z: func () print (yin)}};

call outerFrame.innerframe.z with ();

This does not produce the desired results. The function z can’t
“gee” the slot yin. NewtonScript doesn’t have any mechanism
for following a trail from innerFrame to outerFrame,
except via the special slots named _parent and _proto,
which we don’t provide in this example.

Although the constructor call that creates innerFrame is
inside the constructor call that creates outerFrame, inner-
Frame isn’t really “inside” outerFrame in any real sense. All
that is happening here is that, at runtime, a frame constructor
function is called which builds innerFrame, then puts a
reference to innerFrame in the slot named innerFrame in
the frame called outerFrame, which it also builds at runtime.
The same results can be achieved by the following:

z := func () print ("Test received");
innerFrame := {z:2};
outerFrame := {yin: 1, yang: 2, innerFrame:innerFRAme};

Lexical scoping, like that found in Pascal, is provided only
by the function environment mechanism (see The NewtonScript
Programming Language for more information on function
environments).

Are You Receiving Me?
In the examples in this article, we create some frames and link
them up via the _parent and _proto slots. When we speak
of starting an inheritance lookup at a particular frame, what we
really mean is that the frame in question is the current receiver.
Our zamples don’t always show this because they aren’t fully
executablc programs. In the case of looking up an inherited
function, the functio:: Liax i eventually found and executed is
referred to as the implemeuior. For mar- infrrmation on these
terms, take a look at The NewtonScrip. : nming Language
These terms don’t strictly apply to the examples, since I
execute functions that simulate the inheritance mechanism
indirectly. In my examples, the receiver is represented by the
frame that supposedly contains the currently executing function.
In the inheritance diagrams, it is always located at the bottom
left. It is the starting point, in each case, for the inheritance
search.

NewtonScript's Inheritance Rules

NewtonScript's inheritance rules were designed around the view
system, although they also work with frames that aren’t part of
the view system. Understanding the view system helps you
understand the justification for these rules. In the synopsis
below “view” means a frame that is part of a NewtonScript
program using the view system.

¢ The _parent slot is used to represent containment;
innermost views inherit from their containing views.

e The _proto slot is used to inherit behavior. Most of the
prototype chain for a view is located in ROM, in order to
achieve the design goal of minimizing the runtime use of
RAM.

I go into more detail as we look at each set of behaviors.

Getting a Slot Using a Frame Name
When you access a slot using a frame name, such as
myFrame . dot, NewtonScript’s inheritance mechanism only
traverses the _proto chain. This guarantees that if you use an
explicit frame name to look for a slot, you only find it in your own
frame or in one of the prototype frames, which are typically in
ROM. This is not altered by changing the containment hierarchy
(the _parent chain). This is written incorrectly on the quick
reference card in The NewtonScript Programming Language,
which indicates that only the _parent chain is searched.

Let’s look at how this traversal works. Put the following in
your Project Data file:

Apple := {label: "Apple"};
Fruit := {label: "Fruit"};
Food := (label: "Food", target: "Our target!"};

// Food is our top-level pseudo-class, and has
// no _proto slot.

Fruit;
Food;

Apple._proto :
Fruit._proto :

This builds a simple hierarchy using the _proto slot (see
Figure 5).

Let’s pretend that Apple is the receiver. Let’s write a
function to enumerate the frames that are in our class hierarchy,
by pnntmg the label slots. (We want a general function, not
one that is specific to our particular set of frames). Think for a

PIE Developers 2.4 + July 1994 « Page 22

—

moment about how you would implement such a function. If you
are familiar with recursion, try thinking of a recursive solution.
If you aren’t familiar with recursion and you would like to be, I
highly recommend taking a look at the language Scheme, which
is one of NewtonScript’s closest ancestors. See (Springer).

Now that you've thought about it, here is a function that
does it by cheating:

familyTreel := func (frame)
foreach slot, value deeply in frame do
if slot = 'label then print (value);

If you put the above code in your project’s Project Data file,
you can execute it at build time by adding the following code:

afterScript := call familyTreel with (Apple);

This very short function is sneaky and takes advantage of the
fact that foreach deeply searches the _proto chain on its
own 8o we don’t have to. Next, let’s do it on our own.

Here’s a version that does it recursively:

familyTree2 := func(frame)
if frame then
begin
print (frame.label);
call familyTree2 with (frame._proto);
end;

Here’s a method that does the same thing iteratively instead
of recursively, and prints the results in a formatted form in the
Inspector window.

familyTree3 := func (frame)
begin
local ourself := frame;

write (ourself.label);
while ourself do
if ourself := ourself._proto then
write (" is a child of" && ourself.label);
write ("\nEnd of family tree\n");
return NIL;
end;

You can call these functions from the afterScript using the
same method as the familyTreel function.

Getting a Slot

When NewtonScript comes across a symbol in a function that is
used as a value (for example, return target), here is what it
does:

¢ First, it checks to see if the symbol is a local variable that is
defined in the current function. Note that this also checks the
lexical environments of any enclosing functions (see The
NewtonScript Programming Language for more information
on function environments).

* Second, it looks for a slot with a matching name. This search
starts with the receiver, and continues on using _proto and
_parent inheritance as described below.

¢ Finally, NewtonScript looks for a global slot with a matching

name.

Food

self P —P

Apple Fruit

Figure 5

If the slot is not found after trying all three of these methods, an
exception is generated.

Let’s describe how the slot lookup works using the _proto
and _parent inheritance chains. In Figure 6, our target is
represented by the black dot — it’s a slot called target. Arrows
pointing to the right represent _proto links, arrows pointing
up are _parent links. Our target is located at
self._parent._parent._proto. That'’s the shortest route
there, but then, we can see the whole graph. NewtonSeript can’t.
NewtonScript uses its inheritance rules.

What happens when we refer to target? (Let’s assume
that it isn’t a local variable in our function environment). Slot
lookup begins. Target isn’t in the receiver, so NewtonScript
tries to search the receiver’s _proto chain. Our first frame has
no _proto slot, so we've exhausted the _proto chain. The
search goes up to the _parent slot, and we start again.
According to The NewtonScript Programming Language “proto-
type inheritance takes precedence over parent inheritance; all
prototype frames on one level are searched before moving up to
search a parent frame and its prototypes on another level” (p. 5-
5). The route that NewtonScript takes is illustrated in Figure 7.

NewtonScript tries the following order:

1. self
(NewtonScript sees the proto chain is exhausted,
since self has no proto chain).
2. self._parent
3. self._parent._proto
4. self._parent._proto._proto
(NewtonScript sees the proto chain is exhausted,
so it backs up and starts again with the parent)
5. self._parent._parent
6. self._parent._parent._proto
(Success!)

_>‘

L}
3

self

v

Figure 6

3
3

self

Figure 7 - NewtonScript's search route.

PIE Developers 2.4 - July 1994 + Page 23

If you've studied computer science, you might have noticed
that if you rotate Figure 6 by 180 degrees so that self is at the
top, it resembles a binary tree. The analogy is an imperfect one,
but it might be encouraging to remember that NewtonScript’s
inheritance structure is no more complicated than a binary tree.
The rules that NewtonScript uses for searching this data
structure, however, are quite different, and our frames are not
sorted or balanced like binary trees usually are.

If NewtonScript was written in NewtonScript, the code to
get a slot might look something like this:

recursiveSearchProtoChain := func (frame, slotName)
begin .
local result := nil;

if frame then
if HasSlot(frame, slotName) then
result := frame;
else
result
{frame._proto,
return result;
end;
recursiveSearchParentAndProtoChain :=
slotName)
begin
local result := nil;
if frame then
if not result := call recursiveSearchProtoChain
with (frame, slotName) then
result := call recursiveSearchParentAndProtoChain
with (frame._parent, slotName);
return result;
end;

:= call recursiveSearchProtoChain with
slotName) ;

func (frame,

SCRATCH-PROOF YOUR MEWTON ™

More Protection

Mare Convenient

..Is a thin protective membrane that you can install
over your Newton screen in less than a minute!!

‘The Barrisr lets you use your Newton anywhere without fear of
scratching or marring the expensive Newton screen surface.
The Barrier can improve your handwritting by providing a more

consistent surface that eliminates the dead and slick spots.
'The Barrisr reduces glare and eliminates fingerprint marks.
Tha Barrisr allows you to use a pencil or sven you fingernail to
navigate or write

Order The Barrisr ($21.95 + $2.50 S&H) with Visa, MC, Check or
money order from:

RoadRunner Tracks

P.0. Box 1118 Los Alamos, NM 87544
505-662-5826 800-882-8382 (orders only)

AOL, T Barrier: CIS, 74224,1744: Applelink: Mellow.H

To use this code, you would call recursiveSearchParentAnd-
ProtoChain with a reference to a starting frame (representing
the receiver in our example) and the name of a slot to look for. In
the example above, this would look something like this:

if call recursiveSearchParentAndProtoChain with
(self, 'target) then
print ("Found it!")
else
print ("Failed to find target.");

The next set of frames shows a working example combining
system prototypes and the parent containment hierarchy —
envision a radio button inside a radio button group inside a
clView, with all of these frames pointing to prototype frames in
ROM.

fakeROMprotol := {label: "fake clView proto"};

fakeROMproto2 := {label: "fake radioButton group
proto"};

fakeROMproto3 := {label: "fake radioButton proto"};

fakeRadioButton := {label: "fake radio button"};

fakeRadioButtonGroup := {label: "fake radio button
group"};

fakeclView := {label: "fake clView"};

// put our target in a slot in a specific frame

fakeROMprotol.target := "our target!";

// now, set up dual inheritance relationship

fakeRadioButton._proto := fakeROMproto3;
fakeRadioButtonGroup._proto := fakeROMproto2;
fakeclView._proto := fakeROMprotol;
fakeRadioButton._parent := fakeRadioButtonGroup;
fakeRadioButtonGroup._parent := fakeclView;
if call recursiveSearchParentAndProtoChain with
(fakeRadioButton, 'target) then

print ("Found it!")
else

print ("Failed to find target.");

Feel free to borrow this code, play with it, and add print
statements along the way to see what is happening. If you
understand this simulation, you understand slot lookup in
NewtonScript.

For those who might have trouble with recursion, here’s a
version of the same function that works iteratively instead of
recursively:

IterativeSearchParentAndProtoChain :=
func (frame, slotName)
begin
local parentWalker := frame;
local protoWalker := frame;
while parentWalker do
begin
while protoWalker do
begin
if HasSlot (protoWalker, 'target)
then return print("found it!");

protoWalker := protoWalker._proto;
end;
protoWalker := parentWalker._parent;
parentWalker := parentWalker._ parent;
end;

end;

PIE Developers 2.4 + July 1994 - Page 24

—_—

A NewfonScript Method Call

A NewtonScript method call, also called sending a message or
calling a function, traverses the _proto and _parent chains.
The traversal order is the same as the order for getting a slot.
You can easily write some test frames of your own and put
functions with the same names in different positions, to see for
yourself how this works.

A NewlonScript Method Call Using the Inherited Keyword
The special case of sending a method call using the inherited
keyword, as in the form inherited:method() or
inherited: ?method () also only traverses the calling object’s
_proto chain. Using the inherited keyword does not change
the receiver. You can’t use the inherited keyword and supply
a specific frame to send the message to.

Why doesn't the form inherited:method traverse the
_parent chain? Consider, for example, a button inside a clView.
The button’s viewSetupFormScript doesn’t necessarily
inherit default behavior from the _parent frame, since this
relationship is one of containment, rather than specialization of
behavior. The default behavior of a button is in its ROM
_proto, not in its containing clView.

Setting a Slot

Next, let’s set the value of target. This could be accomplished
by a line of NewtonScript such as target := 5. How does
NewtonScript search for the place to set target? First, I
assume that there is no local variable in the function environ-
ment with the desired name (if there is one it’s used). I also
assume there is no global with the same name to use if the
inheritance search fails. For a complete explanation of the search
rules, see The NewtonScript Programming Language p. 5-7.
Here's a summary: a slot is never set in any of the frame’s
_proto ancestors or in a frame’s parents; it is always set in the
frame or the frame’s _parent that heads up the _proto chain
in which the slot was found.

This may sound complicated, but its purpose becomes clear
if you understand the rules for getting a slot, and understand
that members of the proto chain are generally not in RAM (they
are in pseudo-ROM, or in real ROM). (McKeehan and Rhodes, p.
154) suggest that if multiple objects refer to the same _proto
frame, overriding a slot in one of the objects does not automati-
cally affect the search paths of the others. When you set a slot,
the rules guarantee that if you get that slot again, you always
get the new value, which stands in the way of NewtonScript’s
search.

Let’s take a look at the example shown in Figure 8 (the dot
represents the found slot, the box represents where the shadow-
ing slot is placed). Here is the search sequence:

1 e

*
4

self

Figure 8

1. self
(NewtonScript sees the proto chain is exhausted,
since self has no _proto).
2. self._parent
3. self._parent._proto
4. self._parent._proto._proto
(NewtonScript sees the proto chain is exhausted,
so it backs up and starts again with the parent)
5. self._parent._parent
6. self._parent._parent._proto
(Success! NewtonScript never sets a slot in the
_proto chain, so it sets it back in the chain’s
head)

If there is no existing local variable, or inherited or global
slot to shadow with the set operation, NewtonScript makes a
local variable in the currently executing function environment. It
is generally considered to be bad style to create a local this way,
since it isn’t clear what you are doing. I recommend creating
local variables explicitly, using the local keyword. In addition,
NewtonScript has to create an additional data structure at
runtime to hold this local, so it is accessed less efficiently then if
it was created using the local keyword. Mike Engber also
warns that NewtonScript may disallow this implicit declaration
of locals in the future. (Some environments, such as Visual
BASIC, let you state whether you allow implicit declaration of
local variables or not; I always set this option to require explicit
declaration, since it helps catch a common programming error
such as misspelling the name of a variable in an assignment
statement).

Altering the Inheritance Structure at Runtime
Since slots in any frames stored in RAM can be modified at
runtime, and NewtonScript simply uses slots to create its
inheritance links, you can modify any RAM-based object’s
inheritance links at runtime. Again, there is nothing special
about the _parent and _proto slots, except the way that the
runtime system uses them to search for slots.

The following example started out as an accident. I was
creating a set of sample frames that looked something like this:

wackyFrame := {label: "Great-grandparent", _proto:
{label: "Grandparent", _proto:
{label: "Parent", _proto:
{label: "Child"}}}}:

Oh, wait. That’s wrong. I made the proto links point in the wrong
direction. Parents shouldn’t point to children!.

Never fear, I'll just write a function to reverse the links.
After all, being a dynamic language, NewtonScript is flexible to
the point of being rubbery. (For additional ideas on what you can
do with altering inheritance links dynamically at runtime in
NewtonScript, take a look at (Ungar)). If my function is correct,
the resulting frame should look like this:

{label:
_proto:
_proto:
_proto:

"Child",
{label: "Parent",
{label: "Grandparent",
{label: "Great-grandparent"}}}}

Here’s the transformation function. The return value is a
reference to the new chain of frames (which now starts with the
frame that used to be the end of the chain).

PIE Developers 2.4 « July 1994 - Page 25

recursiveReverseProtoChain := func(frame)
begin
if not frame._proto then return frame;
local oldProto := frame._proto;
local result := call recursiveReverseProtoChain
with (oldProto);
RemoveSlot (frame, '_proto);
oldProto._proto := frame;
return result;
end;

An iterative version of the above function is left, as they say, as
an exercise for the reader. Have fun playing with this code, and if
you make any interesting discoveries, drop me a line.

I would like to express my thanks to Mike Engber and
Walter Smith for reviewing my code, finding many errors, and
even supplying a working function or two when I got stuck. With
luck and their assistance, we have caught most of the technical
errors. Any remaining bugs are, as usual, my own fault.

ANNOTATED BIBLIOGRAPHY

There are lots of good books available on object-oriented pro-
gramming. Some of them are specific to individual languages,
and most tend to focus on one particular idiom for the use of
object-oriented concepts. These are some of the books and papers
I have studied, all or in part, in the past few years:

Agesen, Ole, et. al. “Type Inference of SELF: Analysis of Objects
with Dynamic and Multiple Inheritance.” This paper is available
in PostScript form via anonymous ftp from self.stanford.edu. It's
a scholarly paper, and I couldn’t understand much of it, but I did
pick up some interesting tidbits. For example, in SELF, the
syntax for getting an object from a slot is the same as the syntax
for invoking a method in that slot which returns an object. This
would be an interesting feature for a future version of
NewtonScript, and useful for rapid prototyping and implement-
ing default behaviors for objects. You could even change the
contents of a slot from a data object to a function at runtime.

Booch, Grady. Object-Oriented Analysis and Design with Applica-
tions, second edition. Redwood City, CA: Benjamin/Cummings,
1994. This is probably the most accessible book on object-
oriented design available, and is quite comprehensive. Booch
provides a specialized notation for designing classes.

Coad, Peter and Nicola, Jill. Object-Oriented Programming.
Englewood Cliffs, NJ: Prentice Hall (Yourdon Press), 1993. This
book shows examples in C++ and Smalltalk, and comes with a
source code disk. It is especially fun for its presentation of a
number of informal and usable guidelines on how to create
reusable classes to model real-world problems.

Jacobson, Ivar, et. al. Object-Oriented Software Engineering: a
Use Case Driven Approach. Reading, MA: Addison-Wesley (ACM
Press), 1993. This is a comprehensive textbook on object-oriented
design. It focuses largely on the formal process of software
design. It contains an interesting chapter on the design of
software components.

McKeehan, Julie and Rhodes, Neil. Programming for the
Newton: Software Development with NewtonScript. Cambridge,
MA: Academic Press, Inc. (AP Professional Imprint), 1994. This
is the first major book for Newton developers outside of the
Newton Toolkit documentation, and includes a demonstration
version of the Newton Toolkit software. Given the relatively high
cost of the Newton Toolkit, this bundle is probably the easiest
way to get your feet wet in Newton programming.

Meyer, Bertrand. Eiffel: the Language. New York, NY: Prentice
Hall, 1992. Eiffel is not yet widely used, and lacks native
compilers for many platforms, but it looks like a very promising
language. It has many interesting features not available in most
other languages such as assertions, a dynamic runtime environ-
ment, exception handling, and persistent objects.

Shlaer, Sally and Mellor, Stephen J. Object Lifecycles: Modeling
the World in States. Englewood Cliffs, NJ: Prentice Hall (Your-
don Press), 1992. This is a technical overview of how to build
complex systems using several models: state models, process
models and information models. It differs considerably from
other books on object-oriented design. I found it particularly
interesting for its descriptions of objects using state machines
and data flow diagrams. After using state machines in a recent
project, I find that I now rely on them heavily when thinking
about object relationships. Class-based inheritance relationships
get a very brief discussion as one type of relation between
objects.

Sphar, Chuck. Object-Oriented Programming Power for THINK
Pascal Programmers. Redmond, WA: Microsoft Press, 1991. This
is an older book that talks about the use of class libraries in
Object Pascal, referring specifically to TCL, MacApp and several
small examples built from scratch. If you're a Pascal program-
mer, this book could serve as a good introduction to object-

oriented programming.

Springer, George and Friedman, Daniel P. Scheme and the Art of
Programming. Cambridge, MA: MIT Press, 1989. If you’re
interested in making the leap from languages like Pascal and C
to LISP and its variants, the easiest way would probably be to
get a copy of Gambit Scheme for the Macintosh and work
through this book. Learning a little bit about Scheme can give
you a great deal of insight into NewtonScript.

Stroustrup, Bjarne. The Design and Evolution of C++. Reading,
MA: Addison-Wesley, 1994. If you've ever wanted to get inside
the mind of Bjarne Stroustrup to understand why the language
developed in the way it did, here’s your chance.

Ungar, David, et. al. “Organizing Programs Without Classes.”
(This paper is available in PostScript form via anonymous ftp
from self.stanford.edu). This paper discusses how SELF can
build object-oriented programs in which there are no classes —
objects inherit only from other objects. Some of the ideas in this
paper are applicable to NewtonScript, which borrowed some of
its ideas from SELF. For example, the authors show a way to
change the drawing style of a graphical object in a drawing
program from boxed to smooth by altering its parent link at
runtime.

Waldo, Jim, editor. The Evolution of C++: Language Design in
the Marketplace of Ideas. Cambridge, MA: MIT Press (A Usenix
Association Book), 1993. This book contains a variety of histori-
cal articles on various features in C++, including two of Bjarne
Stroustrup’s original articles. Two of the most interesting are by
Tom Cargill and Jim Waldo, presenting two sides of the debate
about the inclusion of multiple inheritance in the language. &

Paul R. Potts is currently between meaningful work experiences.
He is available to entertain at parties by constructing inherit-
ance chains out of thin air. To find him, look for a wild-eyed,
bearded man shuffling up and down the sidewalk outside of
Border’s Books in Ann Arbor; Michigan, wearing a sign around
his neck that says “Will build object-oriented applications for
food.”

PIE Developers 2.4 « July 1994 - Page 26

